Skip to main content
Log in

Theoretical models for the extracavity Raman laser with crystalline Raman medium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The rate equation model of an extracavity Raman laser is deduced for the first time to the best knowledge of the authors. The normalized radiation transfer equations of the extracavity Raman laser are given. The normalized radiation transfer equations and rate equations were solved numerically to find the optimum reflectivity of the output coupler to realize the maximum conversion efficiency at the first Stokes for both the single and double-pass pumping configurations. Also, the pulse duration of the first Stokes was investigated numerically. The rate equations are verified to be a good approximation to the radiation transfer equations for the regime of low Raman gain and long pump pulse duration. Furthermore, it is found that the optimum reflectivity of the first Stokes and the second Stokes threshold are influenced significantly by the minor feedback of the resonator mirror at the second Stokes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Zverev, T.T. Basiev, V.V. Osiko, A.M. Kulkov, V.N. Voitsekhovskii, V.E. Yakobson, Opt. Mater. 11, 315 (1999)

    Article  Google Scholar 

  2. T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Opt. Mater. 15, 205 (2000)

    Article  ADS  Google Scholar 

  3. A.A. Kaminskii, K.I. Ueda, H.J. Eichler, Y. Kuwano, H. Kouta, S.N. Bagaev, T.H. Chyba, J.C. Barnes, G.M.A. Gad, T. Murai, J. Lu, Opt. Commun. 194, 201 (2001)

    Article  ADS  Google Scholar 

  4. Y.F. Chen, Opt. Lett. 29, 1251 (2004)

    Article  ADS  Google Scholar 

  5. H.M. Pask, Prog. Quantum Electron. 27, 3 (2003)

    Article  Google Scholar 

  6. P. Cerny, H. Jelinkova, P.G. Zverev, T.T. Basiev, Prog. Quantum Electron. 28, 113 (2004)

    Article  ADS  Google Scholar 

  7. H.M. Pask, S. Myers, J.A. Piper, Opt. Lett. 28, 435 (2003)

    Article  ADS  Google Scholar 

  8. C. He, T.H. Chyba, Opt. Commun. 135, 273 (1997)

    Article  ADS  Google Scholar 

  9. R.P. Mildren, M. Convery, H.M. Pask, J.A. Piper, Opt. Express 12, 785 (2005)

    Article  ADS  Google Scholar 

  10. P.G. Zverev, T.T. Basiev, A.M. Prokhorov, Opt. Mater. 11, 335 (1999)

    Article  Google Scholar 

  11. C.S. Wang, Phys. Rev. 182, 482 (1969)

    Article  ADS  Google Scholar 

  12. Y.R. Shen, N. Bloembergen, Phys. Rev. 137, 1787 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Maier, W. Kaiser, J.A. Giordmaine, Phys. Rev. 177, 580 (1969)

    Article  ADS  Google Scholar 

  14. D. von der Linde, M. Maier, W. Kaiser, Phys. Rev. 178, 11 (1969)

    Article  ADS  Google Scholar 

  15. P. Cerny, H. Jelinkova, Opt. Lett. 27, 360 (2002)

    Article  ADS  Google Scholar 

  16. J.T. Murray, W.L. Austin, R.C. Powell, Opt. Mater. 11, 353 (1999)

    Article  Google Scholar 

  17. A.K. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, IEEE J. Quantum Electron. QE-30, 3017 (1994)

    Article  ADS  Google Scholar 

  18. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, Z. Liu, J. Chang, S. Zhang, S. Wang, Y. Liu, IEEE J. Quantum Electron. QE-42, 78 (2006)

    Article  ADS  Google Scholar 

  19. V.L. Kalashnikov, Opt. Commun. 218, 147 (2003)

    Article  ADS  Google Scholar 

  20. A.A. Demidovich, P.A. Apanasevich, L.E. Batay, A.S. Grabtchikov, A.N. Kuzmin, V.A. Lisinetskii, V.A. Orlovich, O.V. Kuzmin, V.L. Hait, W. Kiefer, M.B. Danailov, Appl. Phys. B 76, 509 (2003)

    ADS  Google Scholar 

  21. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, Y. Usuki, Opt. Commun. 194, 401 (2001)

    Article  ADS  Google Scholar 

  22. J.J. Degnan, IEEE J. Quantum Electron. QE25, 214 (1989)

    Article  ADS  Google Scholar 

  23. J.B. Grun, A.K. McGuillan, B.P. Stoicheff, Phys. Rev. 180, 61 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ding.

Additional information

PACS

42.55 42.55.Ye; 42.65 42.65.Dr; 02.60 02.60.Lj; 63.20 63.20.-e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Zhang, X., Wang, Q. et al. Theoretical models for the extracavity Raman laser with crystalline Raman medium. Appl. Phys. B 85, 89–95 (2006). https://doi.org/10.1007/s00340-006-2306-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2306-y

Keywords

Navigation