Skip to main content
Log in

Near infrared cw-CRDS coupled to laser photolysis: Spectroscopy and kinetics of the HO2 radical

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present in this work a new experimental set-up for sensitive detection of reactive species: continuous wave cavity ring-down spectroscopy (cw-CRDS) as a detection method in laser photolysis reactor. HO2 radicals were generated by using a 248 nm photolysis of SOCl2/CH3OH/O2 mixtures and were detected in the first vibrational overtone of the OH stretch around 6625 cm-1, using a DFB diode laser. In order to perform the spectroscopic and kinetic measurements of the HO2 radical, two different timing schemes have been used. The absorption line strength of the transition at 6625.784 cm-1 has been extracted from kinetic measurement to (5.2±1.0)×10-21 cm2 molecule-1cm-1. The detection limit for the actual set-up is 2×1012 molecules cm-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kanno, K. Tonokura, A. Tezaki, M. Koshi, J. Phys. Chem. A 109, 3153 (2005)

    Article  Google Scholar 

  2. L.E. Christensen, M. Okumura, S.P. Sander, R.J. Salawitch, G.C. Toon, B. Sen, J.F. Blavier, K.W. Jucks, Geophys. Res. Lett. 29, 1299 (2002)

    Article  ADS  Google Scholar 

  3. D. Stone, D.M. Rowley, Phys. Chem. Chem. Phys. 7, 2156 (2005)

    Article  Google Scholar 

  4. R.S. Zhu, M.C. Lin, Phys. Chem. Comm. 23, (2001)

  5. A.A. Jemi-Alade, P.D. Lightfoot, R. Lesclaux, Chem. Phys. Lett. 195, 25 (1992)

    Article  ADS  Google Scholar 

  6. A. Tomas, E. Villenave, R. Lesclaux, J. Phys. Chem. A 105, 3505 (2001)

    Article  Google Scholar 

  7. M.E. Jenkin, R.A. Cox, G.D. Hayman, L.J. Whyte, J. Chem. Soc. Faraday Trans. 2 84, 913 (1988)

    Article  Google Scholar 

  8. O.J. Nielsen, M.S. Johnson, T.J. Wallington, L.K. Christensen, J. Platz, Int. J. Chem. Kinet. 34, 283 (2002)

    Article  Google Scholar 

  9. K.H. Becker, E.H. Fink, P. Langen, U. Schurath, J. Chem. Phys. 60, 4623 (1974)

    Article  ADS  Google Scholar 

  10. H.E. Hunziker, H.R. Wendt, J. Chem. Phys. 60, 4622 (1974)

    Article  ADS  Google Scholar 

  11. M.S. Zahniser, A.C. Stanton, J. Chem. Phys. 80, 4951 (1984)

    Article  ADS  Google Scholar 

  12. T.J. Johnson, F.G. Wienhold, J.P. Burrows, G.W. Harris, H. Burkhard, J. Phys. Chem. 95, 6499 (1991)

    Article  Google Scholar 

  13. E.H. Fink, D.A. Ramsay, J. Mol. Spectrosc. 185, 304 (1997)

    Article  ADS  Google Scholar 

  14. C.A. Taatjes, D.B. Oh, Appl. Opt. 36, 5817 (1997)

    Article  ADS  Google Scholar 

  15. L.E. Christensen, M. Okumura, S.P. Sander, R.R. Friedl, C.E. Miller, J.J. Sloan, J. Phys. Chem. A 108, 80 (2004)

    Article  Google Scholar 

  16. N. Kanno, K. Tonokura, A. Tezaki, M. Koshi, J. Mol. Spectrosc. 229, 193 (2005)

    Article  ADS  Google Scholar 

  17. L. Zhu, G. Johnston, J. Phys. Chem. 99, 15114 (1995)

    Article  Google Scholar 

  18. Y. Chen, L. Zhu, J. Phys. Chem. A 107, 4643 (2003)

    Article  Google Scholar 

  19. G.M.P. Just, E.N. Sharp, S.J. Zalyubovsky, T.A. Miller, Chem. Phys. Lett. 417, 378 (2006)

    Article  ADS  Google Scholar 

  20. S.J. Zalyubovsky, D. Wang, T.A. Miller, Chem. Phys. Lett. 335, 298 (2001)

    Article  ADS  Google Scholar 

  21. A.J. Huneycutt, R.N. Casaes, B.J. McCall, C.-Y. Chung, Y.-P. Lee, R.J. Saykally, Chem. Phys. Chem. 5, 321 (2004)

    Google Scholar 

  22. F. Ito, T. Nakanaga, Chem. Phys. 277, 163 (2002)

    Article  Google Scholar 

  23. Y.M. Choi, W.S. Xia, J. Park, M.C. Lin, J. Phys. Chem. A 104, 7030 (2000)

    Article  Google Scholar 

  24. T. Yu, M.C. Lin, C.F. Melius, Int. J. Chem. Kinet. 26, 1095 (1994)

    Article  Google Scholar 

  25. D.B. Atkinson, J.L. Spillman, J. Phys. Chem. A. 106, 8891 (2002)

    Article  Google Scholar 

  26. M. Hippler, M. Quack, Chem. Phys. Lett. 314, 273 (1999)

    Article  ADS  Google Scholar 

  27. C. Fittschen, A. Frenzel, K. Imrik, P. Devolder, Int. J. Chem. Kinet. 31, 860 (1999)

    Article  Google Scholar 

  28. M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Ann. Rep. Prog. Chem. C 101, 100 (2005)

    Article  Google Scholar 

  29. B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)

    Article  ADS  Google Scholar 

  30. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  31. S.S. Brown, Chem. Rev. 103, 5219 (2003)

    Article  Google Scholar 

  32. S.S. Brown, A.R. Ravishankara, H. Stark, J. Phys. Chem. A 104, 7044 (2000)

    Article  Google Scholar 

  33. Y. Guo, M. Fikri, G. Friedrichs, F. Temps, Phys. Chem. Chem. Phys. 5, 4622 (2003)

    Article  Google Scholar 

  34. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  35. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  ADS  Google Scholar 

  36. S.M. Ball, R.L. Jones, Chem. Rev. 103, 5239 (2003)

    Article  Google Scholar 

  37. S.E. Fiedler, A. Hese, A.A. Ruth, Chem. Phys. Lett. 371, 284 (2003)

    Article  ADS  Google Scholar 

  38. T. von Lerber, M.W. Sigrist, Chem. Phys. Lett. 353, 131 (2002)

    Article  ADS  Google Scholar 

  39. G. Totschnig, D.S. Baer, J. Wang, F. Winter, H. Hofbauer, R.K. Hanson, Appl. Opt. 39, 2009 (2000)

    Article  ADS  Google Scholar 

  40. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  41. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.-W. Lee, Appl. Opt. 38, 1859 (1999)

    Article  ADS  Google Scholar 

  42. J. Morville, D. Romanini, M. Chenevier, A. Kachanov, Appl. Opt. 41, 6980 (2002)

    Article  ADS  Google Scholar 

  43. G.S. Tyndall, J.J. Orlando, C.S. Kegley-Owen, T.J. Wallington, M.D. Hurley, Int. J. Chem. Kinet. 31, 776 (1999)

    Article  Google Scholar 

  44. W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, M.J. Molina, JPL Publication 97-4, 1 (1997)

  45. R.A. Cox, J.P. Burrows, J. Phys. Chem. 83, 2560 (1979)

    Article  Google Scholar 

  46. R.-R. Lii, M.C. Sauer, S. Gordon, J. Phys. Chem. 85, 2833 (1981)

    Article  Google Scholar 

  47. E.J. Hamilton, R.-R. Lii, Int. J. Chem. Kinet. 9, 875 (1977)

    Article  Google Scholar 

  48. R.S. Zhu, M.C. Lin, Chem. Phys. Lett. 354, 217 (2002)

    Article  ADS  Google Scholar 

  49. S.P. Sander, M.J. Kurylo, V.L. Orkin, D.M. Golden, R.E. Huie, B.J. Finlayson-Pitts, C.E. Kolb, M.J. Molina, R.R. Friedl, A.R. Ravishankara, G.K. Moortgat, JPL Publication 02-25 (2003)

  50. A. Chichinin, T.S. Einfeld, K.-H. Gericke, J. Grunenberg, C. Maul, L.V. Schäfer, Phys. Chem. Chem. Phys. 7, 301 (2005)

    Article  Google Scholar 

  51. M. Roth, C. Maul, K.-H. Gericke, Phys. Chem. Chem. Phys. 4, 2932 (2002)

    Article  Google Scholar 

  52. H. Wang, X. Chen, B.R. Weiner, J. Phys. Chem. 97, 12260 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fittschen.

Additional information

PACS

42.62.Fi; 82.33.Tb; 82.20.W

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiébaud, J., Fittschen, C. Near infrared cw-CRDS coupled to laser photolysis: Spectroscopy and kinetics of the HO2 radical. Appl. Phys. B 85, 383–389 (2006). https://doi.org/10.1007/s00340-006-2304-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2304-0

Keywords

Navigation