Skip to main content
Log in

Application of a difference-frequency-mixing based diode-laser sensor for carbon monoxide detection in the 4.4–4.8 μm spectral region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An all-solid-state continuous-wave (cw) laser system for mid-infrared absorption measurements of the carbon monoxide (CO) molecule has been developed and demonstrated. The single-mode, tunable output of an external-cavity diode laser (ECDL) is difference-frequency mixed with the output of a 550-mW diode-pumped cw Nd:YAG laser in a periodically poled lithium niobate (PPLN) crystal to generate tunable cw radiation in the mid-infrared region. The wavelength of the 860-nm ECDL can be coarse tuned from 860.782 to 872.826 nm, allowing the sensor to be operated in the spectral region 4.4–4.8 μm. CO-concentration measurements were performed in CO/CO2/N2 mixtures in a room-temperature gas cell, in the exhaust stream of a well-stirred reactor (WSR) at Wright-Patterson Air Force Base and in a near-adiabatic hydrogen/air CO2-doped flame. The noise equivalent detection limits were estimated to be 1.1 and 2.5 ppm per meter for the gas cell and flame experiments, respectively. These limits were computed for combustion gas at 1000 K and atmospheric pressure assuming a signal-to-noise ratio of 1. The sensor uncertainty was estimated to be 2% for the gas-cell measurements and 10% for the flame measurements based on the repeatability of the peak absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998)

    Article  ADS  Google Scholar 

  2. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745 (1997)

    Article  ADS  Google Scholar 

  3. D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 36, 3298 (1997)

    Article  ADS  Google Scholar 

  4. J.J. Nikkari, J.M. DiIorio, M.J. Thomson, Appl. Opt. 41, 446 (2002)

    Article  ADS  Google Scholar 

  5. J. Wang, M. Maiorov, J.B. Jeffries, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Meas. Sci. Technol. 11, 1576 (2000)

    Article  ADS  Google Scholar 

  6. J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000)

    Article  ADS  Google Scholar 

  7. Sacher Lasertechnik, LLC (Buena Park CA, 2005) [http://www.sacher.de/index.php]

  8. Frankfurt Laser Co. (Friedrichsdorf Germany, 2005) [http://www.frlaserco/index.htm]

  9. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)

    Article  Google Scholar 

  10. P.L. Varghese, R.K. Hanson, J. Quantum Spectrosc. Radiat. Transf. 26, 339 (1981)

    Article  ADS  Google Scholar 

  11. P.L. Varghese, R.K. Hanson, J. Quantum Spectrosc. Radiat. Transf. 24, 479 (1980)

    Article  ADS  Google Scholar 

  12. J.H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, Appl. Opt. 32, 6082 (1993)

    ADS  Google Scholar 

  13. H.S. Lowry, C.J. Fisher, J. Quantum Spectrosc. Radiat. Transf. 31, 575 (1984)

    Article  ADS  Google Scholar 

  14. R.G. Daniel, K.L. McNesby, A.W. Miziolek, Appl. Opt. 35, 4018 (1996)

    ADS  Google Scholar 

  15. A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002)

    Article  ADS  Google Scholar 

  16. S. Wehe, M.G. Allen, X. Liu, J.B. Jeffries, R.K. Hanson, AIAA Paper No. 2003-0588 (2003)

  17. T.J. Kulp, S.E. Bisson, R.P. Bambha, T.A. Reichardt, U.-B. Goers, K.W. Aniolek, D.A.V. Kliner, B.A. Richman, K.M. Armstrong, R. Sommers, R. Schmitt, P.E. Powers, O. Levi, T. Pinguet, M. Fejer, J.P. Koplow, L. Goldberg, T.G. Mcrae, Appl. Phys. B. 75, 317 (2002)

    Article  ADS  Google Scholar 

  18. W. Chen, D. Boucher, F.K. Tittel, Recent Res. Dev. Appl. Phys. 5, 27 (2002)

    Google Scholar 

  19. W. Schade, T. Blanke, U. Willer, C. Rempel, Appl. Phys. B. 63, 99 (1996)

    Article  ADS  Google Scholar 

  20. T. Kelz, A. Schumacher, M. Nägele, B. Sumpf, H.-D. Kronfeldt, J. Quantum Spectrosc. Radiat. Transf. 61, 591 (1999)

    Article  ADS  Google Scholar 

  21. D. Richter, D.G. Lancaster, R.F. Curl, W. Neu, F.K. Tittel, Appl. Phys. B. 67, 347 (1998)

    Article  ADS  Google Scholar 

  22. M. Seiter, M.W. Sigrist, Infrared Phys. Technol. 41, 259 (2000)

    Article  ADS  Google Scholar 

  23. K.P. Petrov, R.F. Curl, F.K. Tittel, Appl. Phys. B. 66, 531 (1998)

    Article  ADS  Google Scholar 

  24. K.P. Petrov, L. Goldberg, W.K. Burns, R.F. Curl, F.K. Tittel, Opt. Lett. 21, 86 (1996)

    Article  ADS  Google Scholar 

  25. S.F. Hanna, R. Barron-Jimenez, T.N. Anderson, R.P. Lucht, J.A. Caton, T. Walther, Appl. Phys. B 75, 113 (2002)

    Article  ADS  Google Scholar 

  26. T.N. Anderson, R. Barron-Jimenez, J.A. Caton, R.P. Lucht, S. Roy, M.S. Brown, J.R. Gord, T. Walther, I. Critchley, L. Flamand, In Proc. ASME Summer Heat Transfer Conference HT2003-47532 (2003)

  27. VIGO System S.A. (Warsaw Poland, 2005) [http://www.vigo.com.pl]

  28. R.P. Lucht, R.C. Peterson, N.M. Laurendeau, Fundamentals of Absorption Spectroscopy for Selected Diatomic Flame Radicals (School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 1978)

  29. J. Humlicek, J. Quantum Spectrosc. Radiat. Transf. 21, 309 (1979)

    Article  ADS  Google Scholar 

  30. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Danna, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quantum Spectrosc. Radiat. Transf. 60, 665 (1998)

    Article  ADS  Google Scholar 

  31. L.S. Rothman, A. Barbe, D.C. Bennef, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transf. 82, 5 (2003)

    Article  ADS  Google Scholar 

  32. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  33. A. Wolf, Aufbau eines Diodenlaser-basierten UV-Absorptionssensors für Stickstoffmonoxid (Institute for Applied Physics, TU Darmstadt, Darmstadt, Germany, June 2003)

  34. D.B. Fogel, IEEE Trans. Neural Netw. 5, 3 (1994)

    Article  Google Scholar 

  35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Vol. 1 of FORTRAN Numerical Recipes (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  36. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 90: The Art of Parallel Scientific Computing, Vol. 2 of FORTRAN Numerical Recipes (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  37. R. Barron-Jimenez, T.N. Anderson, J.A. Caton, R.P. Lucht, T. Walther, S. Roy, M.S. Brown, J.R. Gord, AIAA Paper No. 03-0402 (2003)

  38. J.M. Hartmann, L. Rosenmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3063 (1988)

    ADS  Google Scholar 

  39. A. Predoi-Cross, C. Luo, P.M. Sinclair, J.R. Drummond, A.D. May, J. Mol. Spectrosc. 198, 291 (1999)

    Article  ADS  Google Scholar 

  40. P.M. Sinclair, P. Duggan, R. Berman, A.D. May, J.R. Drummond, J. Mol. Spectrosc. 181, 41 (1997)

    Article  ADS  Google Scholar 

  41. J.P. Bouanich, J. Quantum Spectrosc. Radiat. Transf. 13, 953 (1973)

    Article  ADS  Google Scholar 

  42. P. Varanasi, J. Quantum Spectrosc. Radiat. Transf. 15, 191 (1975)

    Article  ADS  Google Scholar 

  43. T. Nakazawa, M. Tanaka, J. Quantum Spectrosc. Radiat. Transf. 28, 409 (1982)

    Article  ADS  Google Scholar 

  44. S.M. Shoenung, R.K. Hanson, Combust. Sci. Technol. 24, 227 (1981)

    Article  Google Scholar 

  45. Q.V. Nguyen, B.L. Edgar, R.W. Dibble, A. Gulati, Combust. Flame 100, 395 (1995)

    Article  Google Scholar 

  46. B. Rosier, P. Gicquel, D. Henry, A. Coppalle, Appl. Opt. 27, 360 (1988)

    ADS  Google Scholar 

  47. R.R. Skaggs, J.H. Miller, Combust. Flame 100, 430 (1995)

    Article  Google Scholar 

  48. R.D. Hancock, K.E. Bertagnolli, R.P. Lucht, Combust. Flame 109, 323 (1997)

    Article  Google Scholar 

  49. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P. Lucht.

Additional information

PACS

07.07.Df; 42.62.Fi; 42.65.Ky; 42.72.Ai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron-Jimenez, R., Caton, J., Anderson, T. et al. Application of a difference-frequency-mixing based diode-laser sensor for carbon monoxide detection in the 4.4–4.8 μm spectral region. Appl. Phys. B 85, 185–197 (2006). https://doi.org/10.1007/s00340-006-2281-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2281-3

Keywords

Navigation