Advertisement

Applied Physics B

, 85:597 | Cite as

Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches

  • Y. LiEmail author
  • C. Wang
  • Y. Chen
  • M. Hu
  • B. Liu
  • L. Chai
Article

Abstract

The accuracy of the solution of the fundamental space-filling mode of photonic crystal fibers by scalar and vectorial analytical approaches and its effect on the effective index models are investigated. Using a plane wave method as a benchmark, we show that the optimal choice of the radius of the equivalent circular unit cell used in the approximations is different for the two approaches and this value has a great effect on the accuracy of the solution of the fundamental space-filling mode. We also show that the vectorial approach with a properly defined value of the radius is highly accurate over a wide parameter range, whereas the scalar approach causes the main error in the scalar effective index model. We also confirm that a fully vectorial effective index model is accurate and efficient in the case of photonic crystal fibers with large air filling fractions.

Keywords

Photonic Crystal Modal Index Photonic Crystal Fiber Vectorial Approach Plane Wave Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Boston, 2003)Google Scholar
  2. 2.
    A. Zheltikov (ed.), Appl. Phys. B 81(2–3), 187 (2005)CrossRefADSGoogle Scholar
  3. 3.
    P. Russell, Science 299, 358 (2003)CrossRefADSGoogle Scholar
  4. 4.
    J.C. Knight, Nature 424, 847 (2003)CrossRefADSGoogle Scholar
  5. 5.
    T.A. Birks, J.C. Knight, P.S.J. Russell, Opt. Lett. 22, 961 (1997)ADSGoogle Scholar
  6. 6.
    J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.S.J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000)CrossRefADSGoogle Scholar
  7. 7.
    N.G.R. Broderick, T.M. Monro, P.J. Bennett, D.J. Richardson, Opt. Lett. 24, 1395 (1999)ADSGoogle Scholar
  8. 8.
    J.C. Knight, T.A. Birks, P.S.J. Russell, J.P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998)ADSGoogle Scholar
  9. 9.
    T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, S.E. Barkou Libori, Electron. Lett. 37, 287 (2001)CrossRefGoogle Scholar
  10. 10.
    R.K. Sinha S.K. Varshney, Microwave Opt. Technol. Lett. 37, 129 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Li, C. Wang, M. Hu, Opt. Commun. 238, 29 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Koshiba, K. Saitoh, Opt. Lett. 29, 1739 (2004)CrossRefADSGoogle Scholar
  13. 13.
    K. Saitoh, M. Koshiba, Opt. Express 13, 267 (2005)CrossRefADSGoogle Scholar
  14. 14.
    K.N. Park, K.S. Lee, Opt. Lett. 30, 958 (2005)CrossRefADSGoogle Scholar
  15. 15.
    R.K. Sinha, A.D. Varshney, Opt. Quantum. Electron. 37, 711 (2005)CrossRefGoogle Scholar
  16. 16.
    F. Brechet, J. Marcou, D. Pagnoux, P. Roy, Opt. Fiber. Technol. 6, 181 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Z. Zhu, T.G. Brown, Opt. Express 10, 853 (2002)ADSGoogle Scholar
  18. 18.
    Z. Zhu, T.G. Brown, Opt. Express 8, 547 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. Midrio, M.P. Singh, C.G. Someda, J. Lightwave Technol. 18, 1031 (2000)CrossRefADSGoogle Scholar
  20. 20.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983)Google Scholar
  21. 21.
    Y. Li, C. Wang, Z. Wang, M. Hu, L. Chai, Opt. Laser Technol., Doi: 10.1016/j.optlastec.2005.07.007 (2005)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Y. Li
    • 1
    Email author
  • C. Wang
    • 1
  • Y. Chen
    • 1
  • M. Hu
    • 1
  • B. Liu
    • 1
  • L. Chai
    • 1
  1. 1.Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information and Technical ScienceTianjin UniversityTianjinP.R. China

Personalised recommendations