Skip to main content
Log in

Accuracy of local field enhancement models: toward predictive models?

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An accurate computation of field enhancement in the vicinity of metallic nanostructures is fundamental for the prediction of different physical phenomena such as SERS or fluorescence, and also for the design of nanostructures for specific applications. Several numerical models have been developed and are used to compute the field enhancement. Nevertheless, its evaluation can be very tedious and boring due to the plasmon resonance increasing the intensity level, and to the discontinuity of the field near the material edges. The behavior of commonly used computational codes is investigated in order to identify the convergence problems, and to propose some solutions to control the accuracy in the computation of the field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Calander, M. Willander, J. Appl. Phys. 92, 4878 (2003)

    Article  ADS  Google Scholar 

  2. L. Novotny, R.X. Bian, X. Sunney Xie, Phys. Rev. Lett. 79, 645 (1997)

    Article  ADS  Google Scholar 

  3. J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Opt. Express 6, 213 (2000)

    Article  ADS  Google Scholar 

  4. N.M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004)

    Article  ADS  Google Scholar 

  5. P. Harscher, S. Amariand, R. Vahldieck, IEEE Trans. Microw. Theory Technol. 50, 433 (2002)

    Article  ADS  Google Scholar 

  6. D. Macías, D. Barchiesi, Opt. Lett. 30, 2557 (2005)

    Article  ADS  Google Scholar 

  7. D. Macías, A. Vial, D. Barchiesi, J. Opt. Soc. Am. A 21, 1465 (2004)

    Article  ADS  Google Scholar 

  8. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M.L. de la Chapelle, Phys. Rev. B 71, 85416 (2005)

    Article  ADS  Google Scholar 

  9. T. Grosges, A. Vial, D. Barchiesi, Opt. Express 13, 8483 (2005)

    Article  ADS  Google Scholar 

  10. R.G. Milner, D. Richards, J. Microsc. 202, 66 (2001)

    Article  PubMed  MathSciNet  Google Scholar 

  11. P. Leuchtmann, C. Fumeaux, D. Baumann, Adv. Radio Sci. 1, 87 (2003)

    Article  ADS  Google Scholar 

  12. A. Moreau, G. Granet, F. Baida, D. Van Labeke, Opt. Express 11, 1131 (2003)

    Article  ADS  Google Scholar 

  13. G. Granet, B. Guizal, J. Opt. Soc. Am. A 13, 1019 (1996)

    Article  ADS  Google Scholar 

  14. B. Guizal, D. Barchiesi, D. Felbacq, J. Opt. Soc. Am. A 12, 2274 (2003)

    Article  ADS  Google Scholar 

  15. A. Sentenac, J. Greffet, J. Opt. Soc. Am. A 9, 996 (1992)

    Article  ADS  Google Scholar 

  16. J.K. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, J. Microsc. 202, 60 (2001)

    Article  PubMed  MathSciNet  Google Scholar 

  17. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1992)

    Google Scholar 

  18. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Barchiesi.

Additional information

PACS

02.70.-c; 42.25.Gy; 61.46.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barchiesi, D., Guizal, B. & Grosges, T. Accuracy of local field enhancement models: toward predictive models?. Appl. Phys. B 84, 55–60 (2006). https://doi.org/10.1007/s00340-006-2217-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2217-y

Navigation