Skip to main content
Log in

Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An improved aggregate-based low-fluence laser-induced incandescence (LII) model has been developed. The shielding effect in heat conduction between aggregated soot particles and the surrounding gas was modeled using the concept of the equivalent heat transfer sphere. The diameter of such an equivalent sphere was determined from direct simulation Monte Carlo calculations in the free molecular regime as functions of the aggregate size and the thermal accommodation coefficient of soot. Both the primary soot particle diameter and the aggregate size distributions are assumed to be lognormal. The effective temperature of a soot particle ensemble containing different primary particle diameters and aggregate sizes in the laser probe volume was calculated based on the ratio of the total thermal radiation intensities of soot particles at 400 and 780 nm to simulate the experimentally measured soot particle temperature using two-color optical pyrometry. The effect of primary particle diameter polydispersity is in general important and should be considered. The effect of aggregate size polydispersity is relatively unimportant when the heat conduction between the primary particles and the surrounding gas takes place in the free-molecular regime; however, it starts to become important when the heat conduction process occurs in the near transition regime. The model developed in this study was also applied to the re-determination of the thermal accommodation coefficient of soot in an atmospheric pressure laminar ethylene diffusion flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Z. Jacobson, J. Geophys. Res. D 107, 4410 (2002)

    Article  ADS  Google Scholar 

  2. J.M. Samet, D.M. DeMarini, H.V. Malling, Science 304, 971 (2004)

    Article  Google Scholar 

  3. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  4. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  5. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)

    Google Scholar 

  6. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  7. R. van der Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  8. D.R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder, W.D. Bachalo, SAE Paper 2000-01-1994 (2000)

  9. S. Dankers, S. Schraml, S. Will, A. Leipertz, Chem. Eng. Technol. 25, 1160 (2002)

    Article  Google Scholar 

  10. A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20, 81 (2003)

    Article  Google Scholar 

  11. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  12. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  13. S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)

    Article  ADS  Google Scholar 

  14. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, NHTC2000-12132, Proc. NHTC’00, 34th Nat. Heat Transfer Conf., Pittsburgh, PA (2000)

  15. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  16. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

  17. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  18. D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, AGARD 90th Symp. of the Propulsion and Energetics Panel on Advancde Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium (1997)

  19. D.L. Hofeldt, SAE Tech. Paper 930079, 33 (1993)

    Google Scholar 

  20. C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 71, 95 (1990)

    Article  Google Scholar 

  21. R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)

    Article  Google Scholar 

  22. Ü.Ö. Köylü, Y.C. Xing, D.E. Rosner, Langmuir 11, 4848 (1995)

    Article  Google Scholar 

  23. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 122, 517 (2000)

    Article  Google Scholar 

  24. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195 (2004)

    Article  Google Scholar 

  25. F. Liu, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)

    Article  Google Scholar 

  26. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)

    Article  Google Scholar 

  27. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quantum Spectrosc. Radiat. Transf. 93, 301 (2005)

    Article  ADS  Google Scholar 

  28. A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977)

    Article  ADS  Google Scholar 

  29. M.G. Allen, B.L. Upschulte, D.M. Sonnenfroh, W.T. Rawlins, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, A. Cho, AIAA paper 2001-0789 (2001)

  30. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2004)

    Article  Google Scholar 

  31. T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2004)

    Article  Google Scholar 

  32. R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)

    Article  Google Scholar 

  33. G.M. Faeth, Ü.Ö. Köylü, Combust. Sci. Technol. 108, 207 (1995)

    Article  Google Scholar 

  34. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 116, 971 (1994)

    Article  Google Scholar 

  35. S.R. Forrest, T.A. Witten, J. Phys. A 12, L109 (1979)

    Article  ADS  Google Scholar 

  36. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 612 (1995)

    Article  Google Scholar 

  37. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  38. F. Liu, M. Yang, D.R. Snelling, G.J. Smallwood, HT2005-72433, Proc. 2005 ASME Summer Heat Transfer Conf., San Francisco, California, USA, July 17–22 (2005)

  39. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  40. P.G. Wright, Discuss. Faraday Soc. 30, 100 (1960)

    Article  Google Scholar 

  41. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  42. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases 3rd edition (University Press, Cambridge, 1970), p. 249

  43. R.J. Kee, J.A. Miller, T.H. Jefferson, CHEMKIN: A general purpose problem-independent, transportable, FORTRAN chemical kinetics code package, SANDIA Report SAND 80-8003 (1980)

  44. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/

  45. F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, J. Quantum Spectrosc. Radiat. Transf. 73, 409 (2002)

    Article  ADS  Google Scholar 

  46. Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Proc. Combust. Inst. 26, 2351 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Additional information

PACS

44.05.+e; 61.46.Df; 65.80.+n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Yang, M., Hill, F. et al. Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Appl. Phys. B 83, 383–395 (2006). https://doi.org/10.1007/s00340-006-2196-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2196-z

Keywords

Navigation