Skip to main content
Log in

Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced incandescence (LII) of nano-second pulsed laser heated nano-particles has been developed into a popular technique for characterizing concentration and size of particles suspended in a gas and continues to draw increased research attention. Heat conduction is in general the dominant particle cooling mechanism after the laser pulse. Accurate calculation of the particle cooling rate is essential for accurate analysis of LII experimental data. Modelling of particle conduction heat loss has often been flawed. This paper attempts to provide a comprehensive review of the heat conduction modelling practice in the LII literature and an overview of the physics of heat conduction loss from a single spherical particle in the entire range of Knudsen number with emphasis on the transition regime. Various transition regime models developed in the literature are discussed with their accuracy evaluated against direct simulation Monte Carlo results under different particle-to-gas temperature ratios. The importance of accounting for the variation of the thermal properties of the surrounding gas between the gas temperature and the particle temperature is demonstrated. Effects of using these heat conduction models on the inferred particle diameter or the thermal accommodation coefficient are also evaluated. The popular McCoy and Cha model is extensively discussed and evaluated. Based on its superior accuracy in the entire transition regime and even under large particle-to-gas temperature ratios, the Fuchs boundary-sphere model is recommended for modeling particle heat conduction cooling in LII applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    ADS  Google Scholar 

  2. D.L. Hofeldt, SAE Tech. Paper 930079, 33 (1993)

    Google Scholar 

  3. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  4. B. Quay, T.-W. Lee, T. Ni., R.J. Santoro, Combust. Flame 97, 384 (1994)

    Article  Google Scholar 

  5. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    ADS  Google Scholar 

  6. R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995)

    ADS  Google Scholar 

  7. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Article  Google Scholar 

  8. D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, AGARD 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-intrusive Instrumentation for Propulsion Engines (Brussels, Belgium, 1997)

  9. D.R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder, W.D. Bachalo, SAE Pap. 2000-01-1994 (2000)

  10. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)

    Article  ADS  Google Scholar 

  11. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    ADS  Google Scholar 

  12. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  13. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)

    Google Scholar 

  14. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  15. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  16. R. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  17. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  18. D. Woiki, A. Giesen, P. Roth, Proc. Combust. Inst. 28, 2531 (2000)

    Article  Google Scholar 

  19. B. Axelsson, P.E. Bengtsson, Appl. Phys. B 72, 361 (2001)

    ADS  Google Scholar 

  20. S. Dankers, S. Schraml, S. Will, A. Leipertz, Chem. Eng. Technol. 25, 1160 (2002)

    Article  Google Scholar 

  21. A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20, 81 (2003)

    Article  Google Scholar 

  22. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  23. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  24. S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)

    Article  ADS  Google Scholar 

  25. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)

    Article  Google Scholar 

  26. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Article  Google Scholar 

  27. T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005)

    Article  Google Scholar 

  28. S.-A. Kuhlmann, J. Schumacher, J. Reimann, S. Will, Evaluation and improvement of laser-induced incandescence for nanoparticle sizing (Proceedings of International Congress for Particle Technology, Nuremberg, Germany, 2004)

  29. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  30. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    Article  ADS  Google Scholar 

  31. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  32. N. Fuchs, Phys. Z. Sowjet. 6, 225 (1934)

    Google Scholar 

  33. L.B. Thomas, S.K. Loyalka, Nucl. Technol. 57, 213 (1982)

    Google Scholar 

  34. S.K. Loyalka, Prog. Nucl. Energ. 12, 1 (1983)

    Article  Google Scholar 

  35. C.J. Dasch, Appl. Opt. 23, 2209 (1984)

    Article  ADS  Google Scholar 

  36. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (John Wiley and Sons Inc., New York, 1960)

    Google Scholar 

  37. E.H. Kennard, Kinetic Theory of Gases (With an Introduction to Statistical Mechanics) (McGraw-Hill, New York, 1938)

    Google Scholar 

  38. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

    Google Scholar 

  39. G.S. Springer, S.W. Tsai, Phys. Fluids 8, 1561 (1965)

    Article  ADS  Google Scholar 

  40. N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Google Scholar 

  41. O. Leroy, J. Perrin, J. Jolly, M. Pealat, J. Phys. D 30, 499 (1997)

    Article  ADS  Google Scholar 

  42. B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 775 (2002)

    Article  Google Scholar 

  43. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  44. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  45. F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, J. Quantum. Spectrosc. Radiat. Transf. 73, 409 (2002)

    Article  ADS  Google Scholar 

  46. R.J. Kee, J.A. Miller, T.H. Jefferson, CHEMKIN: A general purpose problem-independent, transportable, FORTRAN chemical kinetics code package (SANDIA Report SAND 80-8003, 1980)

  47. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/

  48. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quantum Spectrosc. Radiat. Transf. 93, 301 (2005)

    Article  ADS  Google Scholar 

  49. F. Liu, D.R. Snelling, G.J. Smallwood: Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE2005-81322 (Orlando, Florida, USA, November 5–11 2005)

  50. N.V. Tsederberg: Thermal Conductivity of Gases and Liquids (The M.I.T. Press, Cambridge, 1965), p. 143

  51. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  MATH  Google Scholar 

  52. C. Cercignani, C.D. Pagani: Variational approach to rarefied flows in cylindrical and spherical geometry, in Rarefied Gas Dynamics IV, Vol. 1, ed. by C.L. Brundin (Academic Press, New York, 1967), p. 555

  53. N. Pazooki, S.K. Loyalka, J. Thermophys. 2, 324 (1988)

    Article  ADS  Google Scholar 

  54. L. Lees, J. Soc. Ind. Appl. Math. 13, 278 (1965)

    Article  MathSciNet  Google Scholar 

  55. J.R. Brock, Phys. Fluids 9, 1601 (1966)

    Article  ADS  Google Scholar 

  56. G.S. Springer: Heat transfer in rarefied gases, in Advances in Heat Transfer, ed. by T.F. Irvine, J.P. Hartnett (Academic Press, New York, 1971)

  57. N.A. Fuchs, A.G. Sutugin, Highly Dispersed Aerosols (Ann Arbor Science Publishers, Ann Arbor, 1970)

    Google Scholar 

  58. L. Lees, Guggenheim Aeronautical Laboratory, California Institute of Technology, Hypersonic Research Project, Memo No. 51 (1959)

  59. C.Y. Liu, L. Lees, Kinetic theory description of plane compressible Couette flow, in Rarefied Gas Dynamics, ed. by L. Talbot (Academic Press, New York 1961), p. 391

  60. G.S. Springer, S.F. Wan, AIAA J. 4, 1441 (1966)

    Article  ADS  Google Scholar 

  61. F.S. Sherman, A survey of experimental results and methods for the transition regime of rarefied gas dynamics, in Rarefied Gas Dynamics, Vol. II, ed. by J.A. Lauermann (Academic Press, New York, 1963), p. 228

  62. D.R. Snelling, F. Liu, F., G.J. Smallwood, Ö.L. Gülder: Proceedings of NHTC’00, 34th National Heat Transfer Conference, NHTC2000-12132, Pittsburgh, PA (2000)

  63. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  64. L.B. Thomas, in Fundamentals of Gas–Surface Interactions, ed. by H. Saltsburg, J.N. Smith, M. Rogers (Academic Press, New York, 1967), p. 346

  65. M.A. Gallis, D.J. Rader, J.R. Torczynski, Aerosol Sci. Technol. 36, 1099 (2002)

    Article  Google Scholar 

  66. V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005)

    Article  ADS  Google Scholar 

  67. D. Sahni, J. Nucl. Energ. 20, 916 (1966)

    Google Scholar 

  68. S.K. Loyalka, J. Colloid Interf. Sci. 87, 216 (1982)

    Article  Google Scholar 

  69. S.K. Loyalka, J.H. Ferziger, Phys. Fluids 11, 1668 (1968)

    Article  ADS  MATH  Google Scholar 

  70. C. Cercignani, C.D. Pagani, Rarefied flows in presence of fractionally accommodating walls, in Rarefied Gas Dynamics V, ed. by L. Trilling, H.Y. Wachman, (Academic Press, New York, 1969), p. 269

  71. I. Langmuir, J. Am. Chem. Soc. 37, 417 (1915)

    Article  Google Scholar 

  72. N.A. Fuchs: Growth and Evaporation of Drops in Gaseous Media (Pergamon Press, London, 1959)

  73. P.G. Wright, Discuss. Faraday Soc. 30, 100 (1960)

    Article  Google Scholar 

  74. M. Yang, F. Liu, G.J. Smallwood, Application of the direct simulation Monte Carlo method to nanoscale heat transfer between a soot particle and the surrounding gas. Proceedings of the 12th Annual Conference of the CFD Society of Canada, Ottawa, Canada (2004), p. 270

  75. C. Borgnakke, P.S. Larsen, J. Comput. Phys. 18, 405 (1975)

    Article  ADS  Google Scholar 

  76. R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)

    Article  Google Scholar 

  77. J. Zhang, C.M. Megaridis, Combust. Flame 112, 473 (1998)

    Article  Google Scholar 

  78. F. Xu, G.M. Faeth, Combust. Flame 125, 804 (2001)

    Article  Google Scholar 

  79. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)

    Article  Google Scholar 

  80. F. Liu, M. Yang, D.R. Snelling, G.J. Smallwood, Proceedings of 2005 ASME Summer Heat Transfer Conference, HT2005-72433, San Francisco, California (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Additional information

PACS

44.05.+e; 44.10.+i; 47.45.-n; 61.46.Df; 78.70.-g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Daun, K., Snelling, D. et al. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006). https://doi.org/10.1007/s00340-006-2194-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2194-1

Keywords

Navigation