Abstract
Laser-induced incandescence (LII) of nano-second pulsed laser heated nano-particles has been developed into a popular technique for characterizing concentration and size of particles suspended in a gas and continues to draw increased research attention. Heat conduction is in general the dominant particle cooling mechanism after the laser pulse. Accurate calculation of the particle cooling rate is essential for accurate analysis of LII experimental data. Modelling of particle conduction heat loss has often been flawed. This paper attempts to provide a comprehensive review of the heat conduction modelling practice in the LII literature and an overview of the physics of heat conduction loss from a single spherical particle in the entire range of Knudsen number with emphasis on the transition regime. Various transition regime models developed in the literature are discussed with their accuracy evaluated against direct simulation Monte Carlo results under different particle-to-gas temperature ratios. The importance of accounting for the variation of the thermal properties of the surrounding gas between the gas temperature and the particle temperature is demonstrated. Effects of using these heat conduction models on the inferred particle diameter or the thermal accommodation coefficient are also evaluated. The popular McCoy and Cha model is extensively discussed and evaluated. Based on its superior accuracy in the entire transition regime and even under large particle-to-gas temperature ratios, the Fuchs boundary-sphere model is recommended for modeling particle heat conduction cooling in LII applications.
Similar content being viewed by others
References
L.A. Melton, Appl. Opt. 23, 2201 (1984)
D.L. Hofeldt, SAE Tech. Paper 930079, 33 (1993)
R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)
B. Quay, T.-W. Lee, T. Ni., R.J. Santoro, Combust. Flame 97, 384 (1994)
T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)
R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995)
C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)
D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, AGARD 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-intrusive Instrumentation for Propulsion Engines (Brussels, Belgium, 1997)
D.R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder, W.D. Bachalo, SAE Pap. 2000-01-1994 (2000)
M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)
S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)
P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)
S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)
B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)
S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)
R. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)
A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)
D. Woiki, A. Giesen, P. Roth, Proc. Combust. Inst. 28, 2531 (2000)
B. Axelsson, P.E. Bengtsson, Appl. Phys. B 72, 361 (2001)
S. Dankers, S. Schraml, S. Will, A. Leipertz, Chem. Eng. Technol. 25, 1160 (2002)
A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20, 81 (2003)
T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)
T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)
S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)
F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)
B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)
T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005)
S.-A. Kuhlmann, J. Schumacher, J. Reimann, S. Will, Evaluation and improvement of laser-induced incandescence for nanoparticle sizing (Proceedings of International Congress for Particle Technology, Nuremberg, Germany, 2004)
D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)
R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)
B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)
N. Fuchs, Phys. Z. Sowjet. 6, 225 (1934)
L.B. Thomas, S.K. Loyalka, Nucl. Technol. 57, 213 (1982)
S.K. Loyalka, Prog. Nucl. Energ. 12, 1 (1983)
C.J. Dasch, Appl. Opt. 23, 2209 (1984)
R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (John Wiley and Sons Inc., New York, 1960)
E.H. Kennard, Kinetic Theory of Gases (With an Introduction to Statistical Mechanics) (McGraw-Hill, New York, 1938)
G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)
G.S. Springer, S.W. Tsai, Phys. Fluids 8, 1561 (1965)
N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)
O. Leroy, J. Perrin, J. Jolly, M. Pealat, J. Phys. D 30, 499 (1997)
B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 775 (2002)
A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)
H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)
F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, J. Quantum. Spectrosc. Radiat. Transf. 73, 409 (2002)
R.J. Kee, J.A. Miller, T.H. Jefferson, CHEMKIN: A general purpose problem-independent, transportable, FORTRAN chemical kinetics code package (SANDIA Report SAND 80-8003, 1980)
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/
F. Liu, G.J. Smallwood, D.R. Snelling, J. Quantum Spectrosc. Radiat. Transf. 93, 301 (2005)
F. Liu, D.R. Snelling, G.J. Smallwood: Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE2005-81322 (Orlando, Florida, USA, November 5–11 2005)
N.V. Tsederberg: Thermal Conductivity of Gases and Liquids (The M.I.T. Press, Cambridge, 1965), p. 143
P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)
C. Cercignani, C.D. Pagani: Variational approach to rarefied flows in cylindrical and spherical geometry, in Rarefied Gas Dynamics IV, Vol. 1, ed. by C.L. Brundin (Academic Press, New York, 1967), p. 555
N. Pazooki, S.K. Loyalka, J. Thermophys. 2, 324 (1988)
L. Lees, J. Soc. Ind. Appl. Math. 13, 278 (1965)
J.R. Brock, Phys. Fluids 9, 1601 (1966)
G.S. Springer: Heat transfer in rarefied gases, in Advances in Heat Transfer, ed. by T.F. Irvine, J.P. Hartnett (Academic Press, New York, 1971)
N.A. Fuchs, A.G. Sutugin, Highly Dispersed Aerosols (Ann Arbor Science Publishers, Ann Arbor, 1970)
L. Lees, Guggenheim Aeronautical Laboratory, California Institute of Technology, Hypersonic Research Project, Memo No. 51 (1959)
C.Y. Liu, L. Lees, Kinetic theory description of plane compressible Couette flow, in Rarefied Gas Dynamics, ed. by L. Talbot (Academic Press, New York 1961), p. 391
G.S. Springer, S.F. Wan, AIAA J. 4, 1441 (1966)
F.S. Sherman, A survey of experimental results and methods for the transition regime of rarefied gas dynamics, in Rarefied Gas Dynamics, Vol. II, ed. by J.A. Lauermann (Academic Press, New York, 1963), p. 228
D.R. Snelling, F. Liu, F., G.J. Smallwood, Ö.L. Gülder: Proceedings of NHTC’00, 34th National Heat Transfer Conference, NHTC2000-12132, Pittsburgh, PA (2000)
H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)
L.B. Thomas, in Fundamentals of Gas–Surface Interactions, ed. by H. Saltsburg, J.N. Smith, M. Rogers (Academic Press, New York, 1967), p. 346
M.A. Gallis, D.J. Rader, J.R. Torczynski, Aerosol Sci. Technol. 36, 1099 (2002)
V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005)
D. Sahni, J. Nucl. Energ. 20, 916 (1966)
S.K. Loyalka, J. Colloid Interf. Sci. 87, 216 (1982)
S.K. Loyalka, J.H. Ferziger, Phys. Fluids 11, 1668 (1968)
C. Cercignani, C.D. Pagani, Rarefied flows in presence of fractionally accommodating walls, in Rarefied Gas Dynamics V, ed. by L. Trilling, H.Y. Wachman, (Academic Press, New York, 1969), p. 269
I. Langmuir, J. Am. Chem. Soc. 37, 417 (1915)
N.A. Fuchs: Growth and Evaporation of Drops in Gaseous Media (Pergamon Press, London, 1959)
P.G. Wright, Discuss. Faraday Soc. 30, 100 (1960)
M. Yang, F. Liu, G.J. Smallwood, Application of the direct simulation Monte Carlo method to nanoscale heat transfer between a soot particle and the surrounding gas. Proceedings of the 12th Annual Conference of the CFD Society of Canada, Ottawa, Canada (2004), p. 270
C. Borgnakke, P.S. Larsen, J. Comput. Phys. 18, 405 (1975)
R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)
J. Zhang, C.M. Megaridis, Combust. Flame 112, 473 (1998)
F. Xu, G.M. Faeth, Combust. Flame 125, 804 (2001)
A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)
F. Liu, M. Yang, D.R. Snelling, G.J. Smallwood, Proceedings of 2005 ASME Summer Heat Transfer Conference, HT2005-72433, San Francisco, California (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
PACS
44.05.+e; 44.10.+i; 47.45.-n; 61.46.Df; 78.70.-g
Rights and permissions
About this article
Cite this article
Liu, F., Daun, K., Snelling, D. et al. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006). https://doi.org/10.1007/s00340-006-2194-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-006-2194-1