Skip to main content
Log in

Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cavity ringdown (CRD) spectroscopy is extended for the first time from its conventional optical-absorption mode of operation into the regime of coherent Raman spectroscopy. Continuous-wave (cw) stimulated Raman gain (SRG) spectra of the 2916.5-cm-1 ν1 rovibrational fundamental Raman band of methane (CH4) gas are measured, using tunable cw laser light at ∼1544 nm to probe ringdown decay from a rapidly swept optical cavity that is itself inside the cavity of a cw single-longitudinal-mode Nd:YAG ring laser operating at ∼1064.5 nm. The resulting change of ringdown decay rate is dependent on pump laser irradiance and is associated with Raman gain. Remarkably, such SRG-CRD resonances display ringdown times that are longer than in the off-resonance case, contrasting with the usual reduction of ringdown time associated with absorption and other loss processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Busch, M.A. Busch (eds.), Cavity-Ringdown Spectroscopy – An Ultratrace-Absorption Measurement Technique (ACS Symp. Ser. 720) (American Chemical Society, Washington, DC 1999)

  2. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  3. A.B. Harvey (ed.), Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York 1981)

  4. P. Esherick, A. Owyoung, Adv. Infrared Raman Spectrosc. 9, 130 (1982)

    Google Scholar 

  5. P.N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge 1990), Sect. 7.3, pp. 94–101, 203–207, 228–230

  6. Y. He, B.J. Orr, Chem. Phys. Lett. 319, 131 (2000)

    Article  ADS  Google Scholar 

  7. Y. He, B.J. Orr, Chem. Phys. Lett. 335, 215 (2001)

    Article  ADS  Google Scholar 

  8. Y. He, B.J. Orr, Appl. Phys. B 75, 267 (2002)

    Article  ADS  Google Scholar 

  9. E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanov, B.A. Paldus, T.G. Spence, R.N. Zare, Anal. Chem. 74, 2003 (2002)

    Article  PubMed  Google Scholar 

  10. J.B. Dudek, P.B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K.K. Lehmann, Anal. Chem. 75, 4599 (2003)

    Article  PubMed  Google Scholar 

  11. S. Cassi, D. Romanini, A. Campargue, B. Bussery-Honvault, Chem. Phys. Lett. 409, 281 (2005)

    Article  ADS  Google Scholar 

  12. H. Berger, J. Mol. Spectrosc. 66, 55 (1977)

    Google Scholar 

  13. A. Owyoung, C.W. Patterson, R.S. McDowell, Chem. Phys. Lett. 59, 156 (1978)

    Article  ADS  Google Scholar 

  14. A. Owyoung, CW stimulated Raman spectroscopy, Chap. 7, pp. 281–320 in [3] (1981)

  15. J. Santos, P. Cancio, J.L. Domenech, J. Rodriguez, D. Bermejo, Laser Chem. 12, 53 (1992)

    Article  Google Scholar 

  16. H.W. Schrötter, H. Frunder, H. Berger, J.-P. Boquillon, B. Lavorel, G. Millot, in Advances in Non-Linear Spectroscopy (Adv. Spectrosc. 15), ed. by R.J.H. Clark, R.E. Hester (Wiley, New York 1982), pp. 104–108

  17. H. Frunder, D. Illig, H. Finsterhölzl, H.W. Schrötter, B. Lavorel, J.C. Hilico, J.P. Champion, G. Pierre, G. Poussigue, E. Pascaud, Chem. Phys. Lett. 100, 110 (1983)

    Article  ADS  Google Scholar 

  18. J.-E. Lolck, Chem. Phys. Lett. 106, 143 (1984)

    Article  ADS  Google Scholar 

  19. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transfer 96, 139 (2005)

    Article  ADS  Google Scholar 

  20. L.R. Brown, J. Quantum Spectrosc. Radiat. Transfer 96, 251 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.J. Orr.

Additional information

PACS

42.62.Fi; 42.65.Dr; 82.53.Kp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englich, F., He, Y. & Orr, B. Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection. Appl. Phys. B 83, 1–5 (2006). https://doi.org/10.1007/s00340-006-2144-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2144-y

Keywords

Navigation