Skip to main content

Advertisement

Log in

Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-pulse-energy super-continua featuring an M2 of one were generated in standard single-mode fibers. The highest pulse energy achieved was ∼600 nJ and the pulse duration was ∼1 ps. The spectral width of the generated continua extended over up to 35% of the pump wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dorsinville, P.P. Ho, J.T. Manassah, R.R. Alfano, Applications of Supercontinuum: Present and Future. In: The Supercontinuum Laser Source (Springer, New York, 1989), Chap. 9

  2. P. Glas, D. Fischer, G. Steinmeyer, R. Iliew, Y.S. Skibina, N.B. Skibina, V.I. Beloglasov, Generation of a 3-Octave White-Light Continuum in a High-n2 Microstructure Fiber with Normal Dispersion in the Visible/Near-Infrared Spectral Region. In: Proc. CLEO/QELS, page CThEE1, 2004

  3. K.P. Hansen, R.E. Kristiansen, Supercontinuum generation in photonic crystal fibers. http://www.crystal-fibre.com/support/Supercontinuum% 20-%20General.pdf, 2005

  4. S.L. Chin, S. Petit, F. Borne, K. Miyazaki, Jpn. J. Appl. Phys. 38, L126 (1999)

    Article  ADS  Google Scholar 

  5. J.M. Dudley, S. Coen, Opt. Lett. 27, 1180 (2002)

    Article  ADS  Google Scholar 

  6. J.W. Walewski, J.A. Filipa, S.T. Sanders, in preparation

  7. G. Gurzadyan, H. Görner, Chem. Phys. Lett. 319, 164 (2000)

    Article  ADS  Google Scholar 

  8. S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, V.P. Kandidov, J. Nonlinear Opt. Phys. Mater. 8, 121 (1999)

    Article  ADS  Google Scholar 

  9. R.R. Alfano (Ed.), The Supercontinuum Laser Source (Springer, New York, 1989)

  10. T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, Opt. Express 12, 317 (2004)

    Article  ADS  Google Scholar 

  11. J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  12. A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003)

  13. Nonlinear Photonic Crystal Fiber NL·1550·NEG·1. Crystal Fibre, http://www.crystal-fibre.com/datasheets/NL-1550-NEG-1.pdf

  14. C.L. Hagen, J.W. Walewski, S.T. Sanders, IEEE Photonics Tech. Lett. 118, 91 (2005)

    Google Scholar 

  15. C. Lin, R.H. Stolen, Appl. Phys. Lett. 28, 216 (1976)

    Article  ADS  Google Scholar 

  16. K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980)

    Article  ADS  Google Scholar 

  17. J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415 (2004)

    Google Scholar 

  18. K.P. Hansen, J.R. Folkenberg, C. Peucheret, A. Bjarklev, Fully Dispersion Controlled Triangular-core Nonlinear Photonic Crystal Fiber. In: Optical Fiber Communication Conf., Vol. OFC 2003, Atlanta (2003)

  19. P.L. Baldeck, P.P. Ho, R.R. Alfano, Rev. Phys. Appl. 2, 1677 (1987)

    Google Scholar 

  20. Oz Optics Ltd. FC/APC connectors versus flat angled finish FC connectors, http://www.ozoptics.com/ALLNEW_PDF/APN0006.pdf (2003)

  21. Photonic Crystal Fiber End-Sealing. Crystal Fibre A/S, http://www.crystal-fibre.com/products/Sealing.pdf

  22. F. Di Teodoro, J.P. Koplow, S.W. Moore, D.A.V. Kliner, Opt. Lett. 27, 518 (2002)

    Article  ADS  Google Scholar 

  23. Corning OptiFocusTM Collimating Lensed Fiber. Corning, http://www.corning.com/photonicmaterials/products_services/OptiFocus/

  24. A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 3883 (1999)

    Article  ADS  Google Scholar 

  25. R.M. Wood, Laser-induced Damage of Optical Materials (Institute of Physics Publishing, London, 2003)

  26. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995), 2nd edn.

  27. P. Beaud, W. Hodel, B. Zysset, H.P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987)

    Article  ADS  Google Scholar 

  28. M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, J. Opt. Soc. Am. B 6, 1149 (1989)

    Article  ADS  Google Scholar 

  29. G. Keiser, Optical Fiber Communications (McGraw-Hill Science, Boston, 2000)

  30. N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, Y. Namba, Jpn. J. Appl. Phys. 43, 2547 (2004)

    Article  ADS  Google Scholar 

  31. R.J. Bartula, J.W. Walewski, S.T. Sanders, Appl. Phys. B, submitted

  32. R. Huber, H. Satzger, W. Zinth, J. Wachtveitl, Opt. Commun. 194, 443 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.T. Sanders.

Additional information

PACS

42.65.-k; 42.81.-i; 42.79.Nv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walewski, J., Filipa, J., Hagen, C. et al. Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua. Appl. Phys. B 83, 75–79 (2006). https://doi.org/10.1007/s00340-005-2128-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2128-3

Keywords

Navigation