Skip to main content
Log in

Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cavity ring down spectroscopy is used for measurement of the concentration profiles of oxygen in the low pressure (30 Torr) methane/nitrogen/oxygen flames. Three different equivalence ratios are used: 0.8, 1.0 and 1.17. Molecular oxygen concentration is monitored via rotational spectrum of b1 Σ g +←X3 Σ g - (v=0-v′′=0) transition, also known as atmospheric A band, located near 750 nm. The P(15)P(15) line is used for concentration measurements. The sensitivity reached is 2.2×10-8 cm-1. The concentration profiles are in a good agreement with the ones calculated using GRI-3.0 mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smyth KC, Crosley DR (2002) Detection of Minor Species with Laser Techniques. In: Kohse-Hoinghaus K, Jeffries JB (eds) Applied Combustion Diagnostics. Taylor & Francis, New York

    Google Scholar 

  2. Cheskis S, Kachanov A, Chenevier M, Stoeckel F (1997) Appl. Phys. B 64:713

    Article  Google Scholar 

  3. Webber ME, Wang J, Sanders ST, Baer DS, Hanson RK (2000) Proc. Combust. Inst. 28:407

    Google Scholar 

  4. Herzberg G (1989) Molecular Spectra and Moleculare Structure. Spectra of Diatomic molecules. Krieger Publishing Company, Malabar, FL

    Google Scholar 

  5. Minaev B, Vahtras O, Agren H (1996) Chem. Phys. 208:299

    Article  Google Scholar 

  6. Ritter KJ, Wilkerson TD (1987) J. Mol. Spectrosc. 121:1

    Google Scholar 

  7. Hamers E, Schram D, Engeln R (2002) Chem. Phys. Lett. 365:237

    Article  Google Scholar 

  8. Hodges JT, Looney JP, van Zee RD (1996) Appl. Opt. 35:4112

    Google Scholar 

  9. Naus H, van der Wiel SJ, Ubachs W (1998) J. Mol. Spectrosc. 192:162

    Article  PubMed  Google Scholar 

  10. O’Brien LC, Cao H, O’Brien JJ (2001) J. Mol. Spectrosc. 207:99

    Article  PubMed  Google Scholar 

  11. O’Keefe A (1998) Chem. Phys. Lett. 293:331

    Google Scholar 

  12. Seiser N, Robie DC (1998) Chem. Phys. Lett. 282:263

    Google Scholar 

  13. Xu SC, Dai DX, Xie JC, Sha GH, Zhang CH (1999) Chem. Phys. Lett. 303:171

    Article  Google Scholar 

  14. Yang SF, Canagaratna MR, Witonsky SK, Coy SL, Steinfeld JI, Field RW, Kachanov AA (2000) J. Mol. Spectrosc. 201:188

    Article  PubMed  Google Scholar 

  15. Brown LR, Plymate C (2000) J. Mol. Spectrosc. 199:166

    Article  PubMed  Google Scholar 

  16. Huestis DL, Copeland RA, Knutsen K, Slanger TG, Jongma RT, Boogaarts MGH, Meijer G (1994) Can. J. Phys. 72:1109

    Google Scholar 

  17. Kernahan JA, Pang PH-L (1975) Can. J. Phys. 53:455

    Google Scholar 

  18. Miller HC, McCord JE, Choy J, Hager GD (2001) J. Quant. Spectrosc. Radiat. Transfer 69:305

    Article  Google Scholar 

  19. Cheskis S, Derzy I, Lozovsky VA, Kachanov A, Romanini D (1998) Appl. Phys. B 66:377

    Article  Google Scholar 

  20. Derzy I, Lozovsky VA, Cheskis S (1999) Chem. Phys. Lett. 306:319

    Article  Google Scholar 

  21. Lozovsky VA, Rahinov I, Ditzian N, Cheskis S (2001) Faraday Discuss. 119:321

    Article  PubMed  Google Scholar 

  22. Rahinov I, Ditzian N, Goldman A, Cheskis S (2005) Proc. Combust. Inst. 30:1575

    Article  Google Scholar 

  23. Rahinov I, Goldman A, Cheskis S, Combust. Flame. Available online since January 5 (2006)

  24. Romanini D, Lehmann KK (1993) J. Chem. Phys. 99:6287

    Article  Google Scholar 

  25. Morozov V, Olenin A, Tunkin V (1998) Appl. Phys. B 67:573

    Article  Google Scholar 

  26. Pillier L, Moreau C, Mercier X, Pauwels JF, Desgroux P (2002) Appl. Phys. B 74:427

    Article  Google Scholar 

  27. Rothman LS, Rinsland CP, Goldman A, Massie ST, Edwards DP, Flaud JM, Perrin A, Camy-Peyret C, Dana V, Mandin JY, Schroeder J, McCann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P (1998) J. Quant. Spectrosc. Radiat. Transfer 60:665

    Article  Google Scholar 

  28. Mercier MX, Therssen E, Pauwels JF, Desgroux P (2001) Combust. Flame 124:656

    Article  Google Scholar 

  29. Zalicki P, Zare RN (1995) J. Chem. Phys. 102:2708

    Article  Google Scholar 

  30. Stolk RL, ter Meulen JJ (2002) J. Chem. Phys. 117:8281

    Article  Google Scholar 

  31. Kee RJ, Grcar JF, Smooke MD, Millerm JA, A Fortran Program for Modelling Steady Laminar One-Dimentional Premixed Flames Rep. SAND85-8240, 1991. Sandia National Laboratories. Livermore, CA

  32. Bowman CT, Hanson RK, Davidson DF, Gardiner WC, Lissianski V, Smith GP, Golden DM, Frenklach M, Wang H, Goldenberg M: http://www.me.berkeley.edu/gri_mech

  33. Kim JW, Yoo YS, Lee JY, Lee JB, Hahn JW (2001) Appl. Opt. 40:5509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cheskis.

Additional information

PACS

33.20.Kf; 33.70.Fd; 42.60.Da

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, A., Rahinov, I. & Cheskis, S. Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy. Appl. Phys. B 82, 659–663 (2006). https://doi.org/10.1007/s00340-005-2122-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2122-9

Keywords

Navigation