Skip to main content
Log in

Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Layers of densely packed luminescent Si nanocrystals embedded in fused silica act as wavelength-specific planar waveguides that filter the wide-band spontaneous emission. The waveguides’ light output consists of two spectrally narrow (∼10 nm), orthogonally polarized, and spatially directed bands. This effect is shown to result from leaky modes of the lossy waveguides. The results have general applicability to lossy, asymmetric waveguides and show the way to produce spectrally narrow emission without the use of optical cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amato G, Delerue C, von Bardeleben H-J (eds) (1997) Structural and Optical Properties of Porous Silicon Nanostructures. Gordon and Breach, Amsterdam

    Google Scholar 

  2. Lockwood DJ (ed) (1998) Light Emission in Silicon. From Physics to Devices (Semicond. Semimet. 49) Academic, San Diego, CA

  3. Ossicini S, Pavesi L, Priolo F (eds) (2003) Light Emitting Silicon for Microelectronics. (Springer Tracts Mod. Phys. 194) Springer, Berlin

  4. Irrera A, Pacifici D, Miritello M, Franzo G, Priolo F, Iacona F, Sanfilippo D, Di Stefano G, Fallica PG (2002) Appl. Phys. Lett. 81:1866

    Article  ADS  Google Scholar 

  5. Walters RJ, Bourianoff GI, Atwater HA (2005) Nat. Mater. 4:143

    Article  PubMed  ADS  Google Scholar 

  6. Dal Negro L, Cazzanelli M, Daldosso N, Gaburro Z, Pavesi L, Priolo F, Pacifici D, Franzo G, Iacona F (2003) Physica E 16:297

    Article  ADS  Google Scholar 

  7. Khriachtchev L, Räsänen M, Novikov S, Sinkkonen J (2001) Appl. Phys. Lett. 79:1249

    Article  ADS  Google Scholar 

  8. Khriachtchev L, Räsänen M, Novikov S, Lahtinen J (2004) J. Appl. Phys. 95:7592

    Article  ADS  Google Scholar 

  9. Ruan J, Fauchet PM, Dal Negro L, Cazzanelli M, Pavesi L (2003) Appl. Phys. Lett. 83:5479

    Article  ADS  Google Scholar 

  10. Cazzanelli M, Navarro-Urrios D, Riboli F, Daldosso N, Pavesi L, Heitmann J, Yi LX, Scholz R, Zacharias M, Gösele U (2004) J. Appl. Phys. 96:3164

    Article  ADS  Google Scholar 

  11. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Nature 408:440

    Article  PubMed  ADS  Google Scholar 

  12. Valenta J, Pelant I, Luterová K, Tomasiunas R, Cheylan S, Elliman RG, Linnros J, Hönerlage B (2003) Appl. Phys. Lett. 82:955

    Article  ADS  Google Scholar 

  13. Valenta J, Pelant I, Linnros J (2002) Appl. Phys. Lett. 81:1396

    Article  ADS  Google Scholar 

  14. Valenta J, Ostatnický T, Pelant I, Elliman RG, Linnros J, Hönerlage B (2004) J. Appl. Phys. 96:5222

    Article  ADS  Google Scholar 

  15. Ivanda M, Desnica UV, White CW, Kiefer W (2003) in Towards the First Silicon Laser, Pavesi L, Gaponenko S, Dal Negro L (eds) (NATO Sci. Ser. II 93) Kluwer, Dordrecht, pp 191–196

  16. Viera G, Huet S, Boufendi L (2001) J. Appl. Phys. 90:4175

    Article  ADS  Google Scholar 

  17. Baets R, Bienstman P, Bockstaele R (1999) in Confined Photon Systems. Fundamentals and Applications, Benisty H, Gerard J-M, Houdre R, Rarity J, Weisbuch C (eds). Springer, Berlin, pp 39–79

    Google Scholar 

  18. Unger HG (1977) Planar Optical Waveguides and Fibres. Clarendon, Oxford

    Google Scholar 

  19. Kogelnik H, Ramaswamy V (1974) Appl. Opt. 13:1867

    Article  ADS  Google Scholar 

  20. Here the lower boundary is of importance only since the refractive-index contrast at the upper boundary is high enough to assure total internal reflection at angles θ safely higher than θc

  21. Khriachtchev L, Räsänen M, Novikov S (2003) Appl. Phys. Lett. 83:3018

    Article  ADS  Google Scholar 

  22. Khriachtchev L, Novikov S, Lahtinen J, Räsänen M (2004) J. Phys.: Condens. Matter 16:3219

    Article  ADS  Google Scholar 

  23. Luterova K, Skopalova E, Pelant I, Rejman M, Ostatnicky T, Valenta J, in preparation

  24. We take this opportunity to correct the original version of the calculated curves quoted in [14], where a numerical error made worse the agreement with experiment

  25. Jang JH, Zhao W, Bae JW, Selvanathan D, Rommel SL, Adesida I, Lepore A, Kwakernaak M, Abeles JH (2003) Appl. Phys. Lett. 83:4116

    Article  ADS  Google Scholar 

  26. Janz S (2004) in Silicon Photonics, Pavesi L, Lockwood DJ (eds). Springer, Berlin, pp 323–360

    Google Scholar 

  27. Chan S, Fauchet PM (1999) Appl. Phys. Lett. 75:274

    Article  ADS  Google Scholar 

  28. Iacona F, Franzo G, Moreira EC, Priolo F (2001) J. Appl. Phys. 89:8354

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Valenta.

Additional information

PACS

78.67.Bf; 42.79.Gn; 81.07.Bc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelant, I., Ostatnický, T., Valenta, J. et al. Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics. Appl. Phys. B 83, 87–91 (2006). https://doi.org/10.1007/s00340-005-2118-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2118-5

Keywords

Navigation