Skip to main content

Advertisement

Log in

Examination of the oxygenation state of hemoglobin in a phantom and in-vivo tissue applying absorption balancing with two and three laser wavelengths

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-dimensional absorption measurements of hemoglobin in (i) a phantom, imitating the optical properties of tissue, and (ii) in-vivo breast tissue are reported. The method is based on quasi-simultaneous balanced absorption measurements of hemoglobin and oxygenated hemoglobin at selected wavelengths in order to minimize baseline fluctuations during spatial scanning of the sample. The method allows the detection of 0.8 cm-diameter inclusions of oxygenated hemoglobin differing by about 30% in its oxygenation state from the surrounding hemoglobin if two-wavelengths balancing is applied. However, small wavelength detunings from the optimum wavelength positions cause considerable fluctuations of the signal baseline and deteriorate the detection sensitivity, if there is an inhomogeneous distribution of another weak wavelength dependent absorber in the sample. Although the optical absorption of water is relatively small for the wavelengths applied, a considerable influence of the water on the signal baseline was observed in in-vivo measurements of the hemoglobin status in healthy breast tissue. For better compensation of interfering water absorption, a third laser wavelength was applied in order to balance the water absorption. The prospects of this new optical technique for screening of breast tumors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heise HM (2002) in Near-Infrared Spectroscopy – Principles, Instruments, Applications, Siesler HW, Ozaki Y, Kawata S, Heise HM (eds). Wiley-VCH, Weinheim, pp 289–333

    Google Scholar 

  2. Chance B, Alfano RR (ed) (1997) Proc. SPIE 2979

  3. Troy TL, Page DL, Sevick-Muraca EM (1996) J. Biomed. Opt. 1:342

    Article  Google Scholar 

  4. Fishkin JB, Coquoz O, Anderson ER, Brener M, Tromberg BJ (1997) Appl. Opt. 36:10

    Article  ADS  Google Scholar 

  5. Patterson MS, Chance B, Wilson BC (1989) Appl. Opt. 28:2331

    Article  ADS  Google Scholar 

  6. Grosenik D, Wabniz H, Rinneberg HH, Moesta KT, Schlag PM (1999) Appl. Opt. 38:2927

    Article  ADS  Google Scholar 

  7. Schmitz CH, Löcker M, Lasker JM, Hielscher AH, Barbour RL (2002) Rev. Sci. Instrum. 73:429

    Article  ADS  Google Scholar 

  8. Siegel AM, Marota JJA, Boas DA (1999) Opt. Express 4:287

    ADS  Google Scholar 

  9. Yamashita Y, Maki A, Koisumi H (1999) J. Biomed. Opt. 4:414

    Article  Google Scholar 

  10. Zhou S, Chen Y, Zou Q, Nioka S, Li X, Pfaff L, Cowan CM, Chance B (1999) Proc. SPIE 3597:571

    Article  ADS  Google Scholar 

  11. Liger V, Zybin A, Bolshov M, Niemax K (2002) Appl. Spectrosc. 56:250

    Article  ADS  Google Scholar 

  12. Krivtzun V, Graß B, Hergenröder R, Bolshov M, Niemax K, Zybin A (2001) Appl. Spectrosc. 55:1251

    Article  ADS  Google Scholar 

  13. Zybin A, Grunwald C, Mirsky VM, Kuhlmann J, Wolfbeis OS, Niemax K (2005) Anal. Chem. 77:2393

    Article  PubMed  Google Scholar 

  14. Heffer EL, Fantini S (2002) Appl. Opt. 41:3827

    Article  PubMed  ADS  Google Scholar 

  15. Dehghani H, Pogue BW, Poplack SP, Paulsen KD (2003) Appl. Opt. 42:135

    Article  PubMed  ADS  Google Scholar 

  16. Yamashita Y, Maki A, Koisumi H (2002) Med. Phys. 28:1108

    Google Scholar 

  17. Cherussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ (2001) Acad. Radiol. 8:211

    Article  PubMed  Google Scholar 

  18. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson JJ, Tosteson TD, Poplack SP, Paulsen KD (2003) PNAS 100:12349

  19. http://omlc.ogi.edu/spectra/hemoglobin/summary.html

  20. Boverman G, Miller EL, Li A, Zhang Q, Chaves T, Brooks DH, Boas DA (2005) Phys. Med. Biol. 50:3941

    Article  PubMed  Google Scholar 

  21. Heusmann H, Kölzer J, Puls R, Otto J, Heywang-Köbrunner S, Zinth W (1995) Proc. SPIE 2389:798

    Article  ADS  Google Scholar 

  22. Douven LFA, Lucassen GW (2000) Proc. SPIE 3914:312

    Article  ADS  Google Scholar 

  23. http://www.seas.upenn.edu/courses/belab/LabProjects/1998/BE309F98M2R01.htm

  24. Schmitz CH, Graber HL, Luo H, Arif I, Hira J, Pei Y, Blueston A, Zhong S, Andronica R, Soller I, Ramirez N, Barbour S-LS, Barbour RL (2000) Appl. Opt. 39:6466

    Article  ADS  Google Scholar 

  25. Pogue BW, McBride TO, Osterberg UL, Paulsen KD (1999) Opt. Express 4:270

    Article  ADS  Google Scholar 

  26. Pogue BW, Poplack SP, McBride TO, Wells WA, Osterman KS, Osterberg UL, Paulsen KD (2001) Radiology 218:261

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zybin.

Additional information

PACS

41.85.Ja; 42.30.Wb; 42.55.Px; 42.62.Be

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zybin, A., Liger, V., Souchon, R. et al. Examination of the oxygenation state of hemoglobin in a phantom and in-vivo tissue applying absorption balancing with two and three laser wavelengths. Appl. Phys. B 83, 141–148 (2006). https://doi.org/10.1007/s00340-005-2116-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2116-7

Keywords

Navigation