Skip to main content
Log in

Performance bounds on single-particle tracking by fluorescence modulation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We consider fundamental bounds on the performance of single-particle tracking schemes based on non-imaging, fluorescence modulation methods. We calculate the noise density of a linearized position estimate arising from photon-counting statistics and find the optimal estimate of a freely diffusing particle’s position in the presence of this noise. For the experimentally relevant case of a Gaussian laser rapidly translated in a circular pattern, explicit expressions are derived for the noise density. Tracking performance limits are obtained by considering the variance in the estimated position of a Brownian particle with diffusion coefficient D in the presence of a noise density nm, which we find scales generically as (Dnm 2)1/2. For reasonable experimental parameters, a particle with diffusion coefficient D=1 μm2/s cannot be tracked with accuracy better than approximately 100 nm in three dimensions or 80 nm in two dimensions. Using a combination of exact results and numerical simulation, we construct a ‘phase diagram’ for determining parameter regimes in which a particle can be tracked in the presence of measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ha T, Chemla DS, Enderle T, Weiss S (1997) Appl. Phys. Lett. 70:782

    Article  ADS  Google Scholar 

  2. Enderlein J (2000) Appl. Phys. B 71:773

    Article  ADS  Google Scholar 

  3. Enderlein J (2000) Single Mol. 1:225

    Article  ADS  Google Scholar 

  4. Decca RS, Lee C-W, Wassall SR (2002) Rev. Sci. Instrum. 73:2675

    Article  ADS  Google Scholar 

  5. Berglund AJ, Mabuchi H (2004) Appl. Phys. B 78:653

    Article  ADS  Google Scholar 

  6. Andersson SB (2005) Appl. Phys. B 80:809

    Article  ADS  Google Scholar 

  7. Levi V, Ruan Q, Kis-Petikova K, Gratton E (2003) Biochem. Soc. Trans. 31:997

    Article  PubMed  Google Scholar 

  8. Levi V, Ruan Q, Gratton E (2005) Biophys. J. 88:2919

    Article  PubMed  Google Scholar 

  9. Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Biophys. J. 90:1317

    Article  Google Scholar 

  10. Berglund AJ, Mabuchi H (2005) Opt. Express 13:8069

    Article  ADS  Google Scholar 

  11. Yildiz A, Forkey JN, McKinney SA, Ha T, Goodman YE, Selvin PR (2003) Science 300:2061

    Article  PubMed  ADS  Google Scholar 

  12. van Kampen NG (2001) Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam

    MATH  Google Scholar 

  13. Gardiner CW (1985) Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. Springer, Berlin

    Google Scholar 

  14. Jacobs OLR (1996) Introduction to Control Theory, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Berglund.

Additional information

PACS

87.64.Tt; 87.64.Ni; 87.15.Vv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, A., Mabuchi, H. Performance bounds on single-particle tracking by fluorescence modulation. Appl. Phys. B 83, 127–133 (2006). https://doi.org/10.1007/s00340-005-2111-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2111-z

Keywords

Navigation