Skip to main content
Log in

Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 21 April 2006

Abstract

A compact and sensitive photoacoustic setup has been developed based on a recently demonstrated cantilever technique. A micromechanical cantilever transducer is attached to a cylindrical photoacoustic cell and the cantilever’s deflection is monitored with a compact Michelson interferometer. A commercial 1-Watt optical fiber amplifier was used to enhance the performance of the system. A normalized sensitivity of 1.4×10-10 cm-1 W Hz-1/2 was achieved in the detection of carbon dioxide at 1572 nm wavelength. Using 34 mW optical power from a DFB diode laser, the noise-equivalent detection limit for carbon dioxide at this wavelength is 4.0 ppm. Employing the fiber amplifier, we improved the sensitivity to yield measurement of sub-ppm concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigrist MW (1994) Air Monitoring by Spectroscopic Techniques. John Wiley & Sons, New York

    Google Scholar 

  2. Hering P, Lay P, Stry SE (2005) Laser in Environmental and Life Sciences. Springer, Berlin

    Google Scholar 

  3. Ye J, Ma LS, Hall JL (1998) J. Opt. Soc. Am. B 15:6

    Article  ADS  Google Scholar 

  4. Rosencwaig A (1990) Photoacoustics and Photoacoustic Spectroscopy. Robert E. Krieger Publishing, Florida

  5. Webber ME, Pushkarsky M, Patel CKN (2003) Appl. Opt. 42:2119

    Article  ADS  Google Scholar 

  6. Schmohl A, Miklós A, Hess PD (2002) Appl. Opt. 41:1815

    Article  ADS  Google Scholar 

  7. Boschetti A, Bassi D, Iacob E, Iannotta S, Ricci L, Scotoni M (2002) Appl. Phys. B 74:273

    Article  ADS  Google Scholar 

  8. Bozóki Z, Mohácsi A, Szabó G, Bor Z, Erdelyi M, Chen WD, Tittel FK (2002) Appl. Spectrosc. 56:715

    Article  ADS  Google Scholar 

  9. Miklós A, Fehér M (1996) Infrared Phys. Technol. 37:21

    Article  ADS  Google Scholar 

  10. Rossi A, Buffa R, Scotoni M, Bassi D, Iannotta S, Boschetti A (2005) Appl. Phys. Lett. 87:041110

    Article  ADS  Google Scholar 

  11. Bozóki Z, Sneider J, Szabó G, Miklos A, Serényi M, Nagy G, Fehér M (1996) Appl. Phys. B 63:399

    Article  ADS  Google Scholar 

  12. Kauppinen J, Wilcken K, Kauppinen I, Koskinen V (2004) Microchem. J. 76:151

    Article  Google Scholar 

  13. Wilcken K, Kauppinen J (2003) Appl. Spectrosc. 57:1087

    Article  ADS  Google Scholar 

  14. Kosterev AA, Bakhirkin YA, Curl RF, Tittel FK (2002) Opt. Lett. 27:1902

    Article  ADS  Google Scholar 

  15. Kosterev AA, Tittel FK, Serebryakov DV, Malinovsky AL, Morozov IV (2005) Rev. Sci. Instrum. 76:043105

    Article  ADS  Google Scholar 

  16. Laurila T, Cattaneo H, Koskinen V, Kauppinen J, Hernberg R (2005) Opt. Express 13:2453

    Article  ADS  Google Scholar 

  17. Rothman LS, Barbe A, Benner DC, Brown LR, Camy-Peyret C, Carleer MR, Cjance K, Clerbaux C, Dana V, Devi VM, Fayt A, Flaud J-M, Gamache RR, Goldman A, Jacquemart D, Jucks KW, Lafferty WJ, Mandin J-Y, Massie ST, Nemtchinov V, Newnham DA, Perrin A, Rinsland CP, Schroeder J, Smith KM, Smith MAH, Tang K, Toth RA, Auwera JV, Varanasi P, Yoshino K (2003) J. Quantum Spectrosc. Radiat. Transfer 82:5

    Article  ADS  Google Scholar 

  18. Demtröder W (2003) Laser Spectroscopy. Springer, Berlin

    Book  Google Scholar 

  19. Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Appl. Opt. 35:5357

    Article  ADS  Google Scholar 

  20. Veres A, Bozoki Z, Mohacsi A, Szakall M, Szabo G (2003) Appl. Spectrosc. 57:900

    Article  ADS  Google Scholar 

  21. Webber ME, Baer D, Hanson RK (2001) Appl. Opt. 40:2031

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Laurila.

Additional information

PACS

42.62.Fi; 42.55.Px; 82.80.Ch

An erratum to this article can be found at http://dx.doi.org/10.1007/s00340-006-2208-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurila, T., Cattaneo, H., Pöyhönen, T. et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser. Appl. Phys. B 83, 285–288 (2006). https://doi.org/10.1007/s00340-005-2106-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2106-9

Keywords

Navigation