Skip to main content
Log in

A femtosecond neutron source

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The possibility of using the ultrashort ion bunches produced by circularly polarized laser pulses to drive a source of fusion neutrons with sub-optical cycle duration is discussed. A two-sided irradiation of a deuterated thin foil target produces two counter-moving ion bunches, whose collision produces an ultrashort neutron burst. Using particle-in-cell simulations and analytical modeling, it is calculated that, for intensities of a few 1019 W cm-2, more than 103 neutrons per Joule may be producedwithin a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledingham KW, McKenna P, Singhal RP (2003) Science 300:1107

    Article  ADS  Google Scholar 

  2. Norreys PA, Fews AP, Beg FN, Bell AR, Dangor AE, Lee P, Nelson MB, Schmidt H, Tatarakis M, Cable MD (1998) Plasma Phys. Contr. Fus. 40:175

    Google Scholar 

  3. Disdier L, Garçconnet J-P, Malka G, Miquel J-L (1999) Phys. Rev. Lett. 82:1454

    Article  ADS  Google Scholar 

  4. Hilscher D, Berndt O, Enke M, Jahnke U, Nickles PV, Ruhl H, Sandner W (2001) Phys. Rev. E 64:016414

    Article  ADS  Google Scholar 

  5. Izumi N, Sentoku Y, Habara H, Takahashi K, Ohtani F, Sonomoto T, Kodama R, Norimatsu T, Fujita H, Kitagawa Y, Mima K, Tanaka KA, Yamanaka T (2002) Phys. Rev. E 65:036413

    Article  ADS  Google Scholar 

  6. Yang JM, McKenna P, Ledingham KWD, McCanny T, Robson L, Shimizu S, Singhal RP, Wei MS, Krushelnick K, Clarke RJ, Neely D, Norreys PA (2004) J. Appl. Phys. 96:6912

    Article  ADS  Google Scholar 

  7. Belyaev VS, Vinogradov VI, Kurilov AS, Matafonov AP, Andrianov VP, Ignatiev GN, Faenov AY, Pikuz TA, Skobelev IY, Magunov AI, Pikuz Jr SA, Sharkov BY (2004) JETP 98:1133

    Article  ADS  Google Scholar 

  8. Ewald F, Schwörer H, Düsterer D, Sauerbrey R, Magill J, Galy J, Schenkel R, Karsch S, Habs D, Witte K (2003) Plasma Phys. Contr. Fusion 45:A83

    ADS  Google Scholar 

  9. Ter-Avetisyan S, Schnürer M, Hilscher D, Jahnke U, Nickles PV, Sandner W (2005) Phys. Plasmas 12:012702

    Article  ADS  Google Scholar 

  10. Ditmire T, Zweiback J, Yanovsky VP, Cowan TE, Hays G, Wahrton KB (2001) Nature (London) 412:798

    Article  Google Scholar 

  11. Grillon G, Balcou P, Chambaret J-P, Hulin D, Martino J, Moustaizis S, Notebaert L, Pittman M, Pussieux T, Rousse A, Rosseau J-P, Sebban S, Sublemontier O, Schmidt M (2002) Phys. Rev. Lett. 89:065005

    Article  ADS  Google Scholar 

  12. Madison KW, Patel PK, Allen M, Price D, Fitzpatrick R, Ditmire T (2004) Phys. Rev. A 70:053201

    Article  ADS  Google Scholar 

  13. Pretzler G, Seemann A, Pukhov A, Rudolph D, Sätz T, Schramm U, Thirolf P, Habs D, Eidmann K, Tsakiris GD, Meyer-ter-Vehn J, Witte KJ (1998) Phys. Rev. E 58:1165

    Article  ADS  Google Scholar 

  14. Fritzler S, Najmudin Z, Malka V, Krushelnick K, Marle C, Walton B, Wei MS, Clarke RJ, Dangor AE (2002) Phys. Rev. Lett. 89:165004

    Article  ADS  Google Scholar 

  15. Perkins LJ, Logan BG, Rosen MD, Perry MD, Diaz de la Rubia T, Ghoniem NM, Ditmite T, Springer PT, Wilks SC (2000) Nucl. Fusion 40:1

    Article  ADS  Google Scholar 

  16. Milosevic N, Corkum PB, Brabec T (2004) Phys. Rev. Lett. 92:013002

    Article  ADS  Google Scholar 

  17. Chelkowski S, Bandrauk AD, Corkum PB (2004) Phys. Rev. Lett. 93:083602

    Article  ADS  Google Scholar 

  18. Pachucki K, Wycech S, Zylicz J, Pfützner M (2001) Phys. Rev. C 64:064301

    Google Scholar 

  19. Macchi A, Cattani F, Liseykina TV, Cornolti F (2005) Phys. Rev. Lett. 94:165003

    Article  ADS  Google Scholar 

  20. Shen B, Zhang X, Yu MY (2005) Phys. Rev. E 71:015401(R)

    Article  ADS  Google Scholar 

  21. Krausz F, Brabec T (2000) Rev. Mod. Phys. 72:545

    Article  ADS  Google Scholar 

  22. Mourou G, Chang Z, Maksimchuk A, Nees J, Bulanov SV, Bychenkov VY, Esirkepov TZ, Naumova NM, Pegoraro F, Ruhl H (2002) Plasma Phys. Rep. 28:12

    Article  Google Scholar 

  23. Tajima T, Mourou G (2002) Phys. Rev. ST Accel. Beams 5:031301

    ADS  Google Scholar 

  24. Atzeni S, Meyer-ter-Vehn J (2004) The Physics of Inertial Fusion. Clarendon Press, Oxford, pp 3–7

    Google Scholar 

  25. Di Mauro LF (2002) Nature (London) 419:789

    Article  ADS  Google Scholar 

  26. Bucksbaum PH (2003) Nature (London) 421:593

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Macchi.

Additional information

PACS

24.90.+d; 29.25.Dz; 52.38.ph; 52.50.Jm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchi, A. A femtosecond neutron source. Appl. Phys. B 82, 337–340 (2006). https://doi.org/10.1007/s00340-005-2092-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2092-y

Keywords

Navigation