Skip to main content
Log in

Hard X-ray generation from solids driven by relativistic intensity in the lambda-cubed regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Interaction of relativistic intensity laser pulses encompassed at focus by a volume of a few wavelengths cubed with solids is examined. Spectroscopy of hard X-rays of several metallic targets, including Cu, Ge, Mo, Ag, and Sn, irradiated in this regime at a high repetition rate (0.4 kHz), has been experimentally studied. The Kα and Kβ peaks of all targets were obtained. Averaged electron temperatures of several tens of keV and total X-ray conversion efficiencies up to 0.02% are calculated. The X-ray source size is measured to be ∼10 micron with varying elliptical shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Perry MD, Mourou G (1994) Science 64:917

    Article  ADS  Google Scholar 

  2. Mourou GA, Barty CPJ, Perry MD (1998) Phys. Today 51:22

    Article  ADS  Google Scholar 

  3. Mangles SPD, Murphy CD, Najmudin Z, Thomas AGR, Collier JL, Dangor AE, Divall EJ, Foster PS, Gallacher JG, Hooker CJ, Jaroszynski DA, Langley AJ, Mori WB, Norreys PA, Tsung FS, Viskup R, Walton BR, Krushelnick K (2004) Nature 431:535

    Article  PubMed  ADS  Google Scholar 

  4. Geddes CGR, Toth C, van Tilborg J, Esarey E, Schroeder CB, Bruhwiler D, Nieter C, Cary J, Leemans WP (2004) Nature 431:538

    Article  PubMed  ADS  Google Scholar 

  5. Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J-P, Burgy F, Malka V (2004) Nature 431:541

    Article  PubMed  ADS  Google Scholar 

  6. Umstadter D, Chen S-Y, Maksimchuk A, Mourou G, Wagner R (1996) Science 273:472

    Article  PubMed  ADS  Google Scholar 

  7. Zhidkov AG, Sasaki A, Tajima T, Auguste T, D’Olivera P, Hulin S, Monot P, Faenov AY, Pikuz TA, Skobelev IY (1999) Phys. Rev. E 60:3273

    Article  ADS  Google Scholar 

  8. Maksimchuk A, Gu S, Flippo K, Umstadter D, Bychenkov VY (2000) Phys. Rev. Lett. 84:4108

    Article  PubMed  ADS  Google Scholar 

  9. Kmetec JD, Gordon III CL, Macklin JJ, Lemoff BE, Brown GS, Harris SE (1992) Phys. Rev. Lett. 68:1527

    Article  PubMed  ADS  Google Scholar 

  10. Kieffer JC, Matte JP, Pépin H, Chaker M, Beaudoin Y, Johnston TW, Chien CY, Coe S, Mourou G, Dubau J (1992) Phys. Rev. Lett. 68:480

    Article  PubMed  ADS  Google Scholar 

  11. Rousse A, Phuoc KT, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J-P, Umstadter D, Hulin D (2004) Phys. Rev. Lett. 93:135005

    Article  PubMed  ADS  Google Scholar 

  12. Beg FN, Bell AR, Dangor AE, Danson CN, Fews AP, Glinsky ME, Hammel BA, Lee P, Norreys PA, Tatarakis M (1997) Phys. Plasmas 4:447

    Article  ADS  Google Scholar 

  13. Norreys PA, Santala M, Clark E, Zepf M, Watts I, Beg FN, Krushelnick K, Tatarakis M, Dangor AE, Fang X, Graham P, McCanny T, Singhal RP, Ledingham KWD, Creswell A, Sanderson DCW, Magill J, Machacek A, Wark JS, Allott R, Kennedy B, Neely D (1999) Phys. Plasmas 6:2150

    Article  ADS  Google Scholar 

  14. Shearer JW, Garrison J, Wong J, Swain JE (1973) Phys. Rev. A 8:1582

    Article  ADS  Google Scholar 

  15. Cowan TE, Hunt AW, Phillips TW, Wilks SC, Perry MD, Brown C, Fountain W, Hatchett S, Johnson J, Key MH, Parnell T, Pennington DM, Snavely RA, Takahashi Y (2000) Phys. Rev. Lett. 84:903

    Article  PubMed  ADS  Google Scholar 

  16. Max CE, Arons J, Langdon AB (1974) Phys. Rev. Lett. 33:209

    Article  ADS  Google Scholar 

  17. Chen S-Y, Sarkisov GS, Maksimchuk A, Wagner R, Umstadter D (1998) Phys. Rev. Lett. 80:2610

    Article  ADS  Google Scholar 

  18. Lichters R, Meyer-ter-Vehn J, Pukhov A (1996) Phys. Plasmas 3:3425

    Article  ADS  Google Scholar 

  19. Wilks SC, Kruer WL (1997) IEEE J. Quantum Electron. QE-33:1954

    Article  ADS  Google Scholar 

  20. Kieffer JC, Chaker M, Matte JP, Pepin H, Côté CY, Beaudoin Y, Johnston TW, Chien CY, Coe S, Mourou G, Peyrusse O (1993) Phys. Fluids B 5:2676

    Article  Google Scholar 

  21. Rischel C, Rousse A, Uschmann I, Albouy P-A, Geinder J-P, Audebert P, Gauthier J-C, Froster E, Martin J-L, Antonetti A (1997) Nature 390:490

    Article  ADS  Google Scholar 

  22. Rousse A, Antonetti A, Audebert P, Dos Santos A, Fallies F, Geindre JP, Grillon G, Mysyrowicz A, Gauthier JC (1994) J. Phys. B 27:L697

    Article  ADS  Google Scholar 

  23. Raksi F, Wilson KR, Jiang Z, Ikhlef A, Côté CY, Kieffer J-C (1996) J. Chem. Phys. 104:6066

    Article  ADS  Google Scholar 

  24. Krol A, Ikhlef A, Kieffer JC, Bassano DA, Chamberlain CC, Jiang Z, Pe’pin H, Prasad SC (1997) Med. Phys. 24:725

    Article  PubMed  Google Scholar 

  25. Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre JP, Audebert P, Gauthier JC, Hulin D (2001) Nature 410:65

    Article  PubMed  ADS  Google Scholar 

  26. Naumova NM, Nees JA, Sokolov IV, Hou B, Mourou GA (2004) Phys. Rev. Lett. 92:063 902

    Google Scholar 

  27. Naumova N, Sokolov I, Nees J, Maksimchuk A, Yanovsky V, Mourou G (2004) Phys. Rev. Lett. 93:195 003

    Article  Google Scholar 

  28. Eder DC, Pretzler G, Fill E, Eidmann K, Saemann A (2000) Appl. Phys. B 70:211

    Article  ADS  Google Scholar 

  29. Pretzler G, Schlegel T, Fill E, Eder D (2000) Phys. Rev. E 62:5618

    Article  ADS  Google Scholar 

  30. Guo T, Spielmann C, Walker BC, Barty CPJ (2001) Rev. Sci. Instrum. 72:41

    Article  ADS  Google Scholar 

  31. Ewald F, Schwoerer H, Sauerbrey R (2002) Europhys. Lett. 60:710

    Article  ADS  Google Scholar 

  32. Sjögren A, Harbst M, Wahlstrom C-G, Svanberg S, Olsson C (2003) Rev. Sci. Instrum. 74:2300

    Article  ADS  Google Scholar 

  33. Jiang Y, Lee T, Li W, Ketwaroo G, Rose-Petruck CG (2002) Opt. Lett. 27:963

    Article  ADS  Google Scholar 

  34. Korn G, Thoss A, Stiel H, Vogt U, Richardson M, Elsaesser T, Faubel M (2002) Opt. Lett. 27:866

    Article  ADS  Google Scholar 

  35. Albert O, Wang H, Liu D, Chang Z, Mourou G (2000) Opt. Lett. 25:1125

    Article  ADS  Google Scholar 

  36. D. Liu, J. Nees, H. Wang, G. Mourou, Z. Chang (2000) Proceedings of the Conference on Lasers and Electrooptics, San Francisco, PD5/667–668

  37. Hutchinson IH (1987) Principles of Plasma Diagnostics. Cambridge University Press, Cambridge

    Google Scholar 

  38. A. Thompson (2001) X-ray Data Booklet. Lawerence Berkeley National Laboratory, Berkeley CA (presently available at http://xdb.lbl.gov)

  39. Kulcsár G, AlMawlawi D, Budnik FW, Herman PR, Moskovits M, Zhao L, Marjoribanks RS (2000) Phys. Rev. Lett. 84:5149

    Article  PubMed  ADS  Google Scholar 

  40. Yu J, Jiang Z, Kieffer JC, Krol A (1999) Phys. Plasmas 6:1318

    Article  ADS  Google Scholar 

  41. Reich C, Gibbon P, Uschmann I, Förster E (2000) Phys. Rev. Lett. 84:4846

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hou.

Additional information

PACS

52.38.Ph; 52.59.Px; 52.70.La

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, B., Nees, J., Mordovanakis, A. et al. Hard X-ray generation from solids driven by relativistic intensity in the lambda-cubed regime. Appl. Phys. B 83, 81–85 (2006). https://doi.org/10.1007/s00340-005-2085-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2085-x

Keywords

Navigation