Skip to main content

Advertisement

Log in

Production of a chromium Bose–Einstein condensate

Applied Physics B Aims and scope Submit manuscript

Abstract

The recent achievement of Bose–Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 μB, in contrast to other Bose–Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and allow us to produce pure condensates with up to 105 atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T (2005) Phys. Rev. Lett. 94:160401

    Article  PubMed  ADS  Google Scholar 

  2. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Science 269:198

    Article  ADS  Google Scholar 

  3. Davis KB, Mewes M-O, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Phys. Rev. Lett. 75:3969

    Article  PubMed  ADS  Google Scholar 

  4. Bradley CC, Sackett CA, Tollett JJ, Hulet RG (1995) Phys. Rev. Lett. 75:1687

    Article  PubMed  ADS  Google Scholar 

  5. Fried DG, Killian TC, Willmann L, Landhuis D, Moss SC, Kleppner D, Greytak TJ (1998) Phys. Rev. Lett. 81:3811

    Article  ADS  Google Scholar 

  6. Modugno G, Ferrari G, Roati G, Brecha RJ, Simoni A, Inguscio M (2001) Science 294:1320

    Article  PubMed  ADS  Google Scholar 

  7. Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook CI, Aspect A (2001) Science 292:461

    Article  PubMed  ADS  Google Scholar 

  8. Weber T, Herbig J, Mark M, Nägerl H-C, Grimm R (2003) Science 299:232

    Article  PubMed  ADS  Google Scholar 

  9. Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Phys. Rev. Lett. 91(4):040404

    Article  PubMed  ADS  Google Scholar 

  10. Pitaevskii LP, Stringari S (eds)(2003) Bose–Einstein Condensation. Oxford University Press, Oxford

    MATH  Google Scholar 

  11. Inguscio M, Stringari S, Wieman CE (eds)(1999) Proceedings of the International School of Physics Enrico Fermi, Course CXL. IOS Press, Amsterdam

    Google Scholar 

  12. Greiner M, Mandel O, Esslinger T, Hänsch TW, Bloch I (2002) Nature 415:39

    Article  PubMed  ADS  Google Scholar 

  13. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403

    Article  PubMed  ADS  Google Scholar 

  14. Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov GV, Hänsch TW, Bloch I (2004) Nature 429:277

    Article  PubMed  ADS  Google Scholar 

  15. Dürr S, Volz T, Marte A, Rempe G (2004) Phys. Rev. Lett. 92(2):020406

    Article  PubMed  Google Scholar 

  16. Herbig J, Kraemer T, Mark M, Weber T, Chin C, Nagerl H-C, Grimm R (2003) Science 301:1510

    Article  PubMed  ADS  Google Scholar 

  17. Greiner M, Regal CA, Jin DS (2003) Nature 426:537

    Article  PubMed  ADS  Google Scholar 

  18. Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker Denschlag J, Grimm R (2004) Phys. Rev. Lett. 92:120401

    Article  PubMed  ADS  Google Scholar 

  19. Zwierlein MW, Stan CA, Schunck CH, Raupach SMF, Kerman AJ, Ketterle W (2004) Phys. Rev. Lett. 92:120403

    Article  PubMed  ADS  Google Scholar 

  20. Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans SJJMF, Salomon C (2004) Phys. Rev. Lett. 93:050401

    Article  PubMed  ADS  Google Scholar 

  21. Zwierlein MW, Abo-Shaeer JR, Schirotzek A, Schunck CH, Ketterle W (2005) Nature 435:1047

    Article  PubMed  ADS  Google Scholar 

  22. Giovanazzi S, Görlitz A, Pfau T (2003) J. Opt. B: Quantum S. O. 5:208

    Article  Google Scholar 

  23. Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P, Santos L (2005) Phys. Rev. Lett. 95:150406

    Article  PubMed  ADS  Google Scholar 

  24. Werner J, Griesmaier A, Hensler S, Simoni A, Tiesinga E, Stuhler J, Pfau T (2005) Phys. Rev. Lett. 94:183201

    Article  PubMed  ADS  Google Scholar 

  25. Yi S, You L, Pu H (2004) Phys. Rev. Lett. 93:040403

    Article  PubMed  ADS  Google Scholar 

  26. O’Dell DHJ, Giovanazzi S, Eberlein C (2004) Phys. Rev. Lett. 92:250401

    Article  PubMed  Google Scholar 

  27. Góral K, Santos L (2002) Phys. Rev. A 66(2):023613

    Article  ADS  Google Scholar 

  28. Santos L, Shlyapnikov GV, Zoller P, Lewenstein M (2000) Phys. Rev. Lett. 85:1791

    Article  PubMed  ADS  Google Scholar 

  29. Santos L, Shlyapnikov GV, Lewenstein M (2003) Phys. Rev. Lett. 90:250403

    Article  PubMed  ADS  Google Scholar 

  30. Giovanazzi S, Görlitz A, Pfau T (2002) Phys. Rev. Lett. 89:130401

    Article  PubMed  ADS  Google Scholar 

  31. M. Brinkmann, J. Kronjäger, Institut für Laser-Physik, Universität Hamburg, private communication (2005)

  32. Giorgini S, Pitaevskii LP, Stringari S (1996) Phys. Rev. A 54:R4633

    Article  PubMed  ADS  Google Scholar 

  33. Hensler S, Werner J, Griesmaier A, Schmidt PO, Görlitz A, Pfau T, Rzażewski K, Giovanazzi S (2003) Appl. Phys. B 77:765

    Article  ADS  Google Scholar 

  34. S. Hensler, Wechselwirkungen in ultrakalten dipolaren Gasen, Phd thesis, 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (2004)

  35. Hensler S, Greiner A, Stuhler J, Pfau T (2005) Europhys. Lett. 71:918

    Article  ADS  Google Scholar 

  36. Grimm R, Weidemüller M, Ovchinnikov YB (2000) Adv. At. Mol. Opt. Phys. 42:95

    Article  Google Scholar 

  37. Schmidt PO, Hensler S, Werner J, Binhammer Th, Görlitz A, Pfau T (2003) J. Opt. B: Quantum S. O. 5:170

    Article  Google Scholar 

  38. Stuhler J, Schmidt PO, Hensler S, Werner J, Mlynek J, Pfau T (2001) Phys. Rev. A 64:031405(R)

    Article  ADS  Google Scholar 

  39. Schmidt PO, Hensler S, Werner J, Binhammer T, Görlitz A, Pfau T (2003) J. Opt. Soc. Am. B 20(5):960

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Griesmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesmaier, A., Stuhler, J. & Pfau, T. Production of a chromium Bose–Einstein condensate. Appl. Phys. B 82, 211–216 (2006). https://doi.org/10.1007/s00340-005-2070-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2070-4

Keywords

Navigation