Advertisement

Applied Physics B

, Volume 82, Issue 2, pp 211–216 | Cite as

Production of a chromium Bose–Einstein condensate

  • A. GriesmaierEmail author
  • J. Stuhler
  • T. Pfau
Article

Abstract

The recent achievement of Bose–Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 μB, in contrast to other Bose–Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and allow us to produce pure condensates with up to 105 atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.

Keywords

Einstein Condensate Magnetic Trap Optical Trap Chromium Atom Phase Space Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T (2005) Phys. Rev. Lett. 94:160401CrossRefPubMedADSGoogle Scholar
  2. 2.
    Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Science 269:198CrossRefADSGoogle Scholar
  3. 3.
    Davis KB, Mewes M-O, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Phys. Rev. Lett. 75:3969CrossRefPubMedADSGoogle Scholar
  4. 4.
    Bradley CC, Sackett CA, Tollett JJ, Hulet RG (1995) Phys. Rev. Lett. 75:1687CrossRefPubMedADSGoogle Scholar
  5. 5.
    Fried DG, Killian TC, Willmann L, Landhuis D, Moss SC, Kleppner D, Greytak TJ (1998) Phys. Rev. Lett. 81:3811CrossRefADSGoogle Scholar
  6. 6.
    Modugno G, Ferrari G, Roati G, Brecha RJ, Simoni A, Inguscio M (2001) Science 294:1320CrossRefPubMedADSGoogle Scholar
  7. 7.
    Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook CI, Aspect A (2001) Science 292:461PubMedCrossRefADSGoogle Scholar
  8. 8.
    Weber T, Herbig J, Mark M, Nägerl H-C, Grimm R (2003) Science 299:232CrossRefPubMedADSGoogle Scholar
  9. 9.
    Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Phys. Rev. Lett. 91(4):040404CrossRefPubMedADSGoogle Scholar
  10. 10.
    Pitaevskii LP, Stringari S (eds)(2003) Bose–Einstein Condensation. Oxford University Press, OxfordzbMATHGoogle Scholar
  11. 11.
    Inguscio M, Stringari S, Wieman CE (eds)(1999) Proceedings of the International School of Physics Enrico Fermi, Course CXL. IOS Press, AmsterdamGoogle Scholar
  12. 12.
    Greiner M, Mandel O, Esslinger T, Hänsch TW, Bloch I (2002) Nature 415:39CrossRefPubMedADSGoogle Scholar
  13. 13.
    Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403CrossRefPubMedADSGoogle Scholar
  14. 14.
    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov GV, Hänsch TW, Bloch I (2004) Nature 429:277CrossRefPubMedADSGoogle Scholar
  15. 15.
    Dürr S, Volz T, Marte A, Rempe G (2004) Phys. Rev. Lett. 92(2):020406CrossRefPubMedGoogle Scholar
  16. 16.
    Herbig J, Kraemer T, Mark M, Weber T, Chin C, Nagerl H-C, Grimm R (2003) Science 301:1510CrossRefPubMedADSGoogle Scholar
  17. 17.
    Greiner M, Regal CA, Jin DS (2003) Nature 426:537CrossRefPubMedADSGoogle Scholar
  18. 18.
    Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker Denschlag J, Grimm R (2004) Phys. Rev. Lett. 92:120401CrossRefPubMedADSGoogle Scholar
  19. 19.
    Zwierlein MW, Stan CA, Schunck CH, Raupach SMF, Kerman AJ, Ketterle W (2004) Phys. Rev. Lett. 92:120403CrossRefPubMedADSGoogle Scholar
  20. 20.
    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans SJJMF, Salomon C (2004) Phys. Rev. Lett. 93:050401CrossRefPubMedADSGoogle Scholar
  21. 21.
    Zwierlein MW, Abo-Shaeer JR, Schirotzek A, Schunck CH, Ketterle W (2005) Nature 435:1047PubMedCrossRefADSGoogle Scholar
  22. 22.
    Giovanazzi S, Görlitz A, Pfau T (2003) J. Opt. B: Quantum S. O. 5:208CrossRefGoogle Scholar
  23. 23.
    Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P, Santos L (2005) Phys. Rev. Lett. 95:150406CrossRefPubMedADSGoogle Scholar
  24. 24.
    Werner J, Griesmaier A, Hensler S, Simoni A, Tiesinga E, Stuhler J, Pfau T (2005) Phys. Rev. Lett. 94:183201CrossRefPubMedADSGoogle Scholar
  25. 25.
    Yi S, You L, Pu H (2004) Phys. Rev. Lett. 93:040403CrossRefPubMedADSGoogle Scholar
  26. 26.
    O’Dell DHJ, Giovanazzi S, Eberlein C (2004) Phys. Rev. Lett. 92:250401CrossRefPubMedGoogle Scholar
  27. 27.
    Góral K, Santos L (2002) Phys. Rev. A 66(2):023613CrossRefADSGoogle Scholar
  28. 28.
    Santos L, Shlyapnikov GV, Zoller P, Lewenstein M (2000) Phys. Rev. Lett. 85:1791CrossRefPubMedADSGoogle Scholar
  29. 29.
    Santos L, Shlyapnikov GV, Lewenstein M (2003) Phys. Rev. Lett. 90:250403CrossRefPubMedADSGoogle Scholar
  30. 30.
    Giovanazzi S, Görlitz A, Pfau T (2002) Phys. Rev. Lett. 89:130401CrossRefPubMedADSGoogle Scholar
  31. 31.
    M. Brinkmann, J. Kronjäger, Institut für Laser-Physik, Universität Hamburg, private communication (2005)Google Scholar
  32. 32.
    Giorgini S, Pitaevskii LP, Stringari S (1996) Phys. Rev. A 54:R4633CrossRefPubMedADSGoogle Scholar
  33. 33.
    Hensler S, Werner J, Griesmaier A, Schmidt PO, Görlitz A, Pfau T, Rzażewski K, Giovanazzi S (2003) Appl. Phys. B 77:765CrossRefADSGoogle Scholar
  34. 34.
    S. Hensler, Wechselwirkungen in ultrakalten dipolaren Gasen, Phd thesis, 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (2004)Google Scholar
  35. 35.
    Hensler S, Greiner A, Stuhler J, Pfau T (2005) Europhys. Lett. 71:918CrossRefADSGoogle Scholar
  36. 36.
    Grimm R, Weidemüller M, Ovchinnikov YB (2000) Adv. At. Mol. Opt. Phys. 42:95CrossRefGoogle Scholar
  37. 37.
    Schmidt PO, Hensler S, Werner J, Binhammer Th, Görlitz A, Pfau T (2003) J. Opt. B: Quantum S. O. 5:170CrossRefGoogle Scholar
  38. 38.
    Stuhler J, Schmidt PO, Hensler S, Werner J, Mlynek J, Pfau T (2001) Phys. Rev. A 64:031405(R)CrossRefADSGoogle Scholar
  39. 39.
    Schmidt PO, Hensler S, Werner J, Binhammer T, Görlitz A, Pfau T (2003) J. Opt. Soc. Am. B 20(5):960CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.5. Physikalisches InstitutUniversität StuttgartStuttgartGermany

Personalised recommendations