Skip to main content

Advertisement

Log in

Mechanisms of femtosecond laser nanosurgery of cells and tissues

  • Invited paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We review recent advances in laser cell surgery, and investigate the working mechanisms of femtosecond laser nanoprocessing in biomaterials with oscillator pulses of 80-MHz repetition rate and with amplified pulses of 1-kHz repetition rate. Plasma formation in water, the evolution of the temperature distribution, thermoelastic stress generation, and stress-induced bubble formation are numerically simulated for NA=1.3, and the outcome is compared to experimental results. Mechanisms and the spatial resolution of femtosecond laser surgery are then compared to the features of continuous-wave (cw) microbeams. We find that free electrons are produced in a fairly large irradiance range below the optical breakdown threshold, with a deterministic relationship between free-electron density and irradiance. This provides a large ‘tuning range’ for the creation of spatially extremely confined chemical, thermal, and mechanical effects via free-electron generation. Dissection at 80-MHz repetition rate is performed in the low-density plasma regime at pulse energies well below the optical breakdown threshold and only slightly higher than used for nonlinear imaging. It is mediated by free-electron-induced chemical decomposition (bond breaking) in conjunction with multiphoton-induced chemistry, and hardly related to heating or thermoelastic stresses. When the energy is raised, accumulative heating occurs and long-lasting bubbles are produced by tissue dissociation into volatile fragments, which is usually unwanted. By contrast, dissection at 1-kHz repetition rate is performed using more than 10-fold larger pulse energies and relies on thermoelastically induced formation of minute transient cavities with lifetimes <100 ns. Both modes of femtosecond laser nanoprocessing can achieve a 2–3 fold better precision than cell surgery using cw irradiation, and enable manipulation at arbitrary locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen YR (1984) The Principles of Nonlinear Optics. Wiley, New York

    Google Scholar 

  2. Vogel A, Venugopalan V (2003) Chem. Rev. 103:577

    Article  PubMed  Google Scholar 

  3. Venugopalan V, Guerra A, Nahen K, Vogel A (2002) Phys. Rev. Lett. 88:078103

    Article  PubMed  ADS  Google Scholar 

  4. König K, Riemann I, Fischer P, Halbhuber K (1999) Cell. Mol. Biol. 45:195

    PubMed  Google Scholar 

  5. Schaffer CB, Brodeur A, García JF, Mazur E (2001) Opt. Lett. 26:93

    Article  ADS  Google Scholar 

  6. Minoshima K, Kowalevicz AM, Hartl I, Ippen E, Fujimoto JG (2001) Opt. Lett. 26:1516

    Article  ADS  Google Scholar 

  7. Watanabe W, Asano T, Yamada K, Itoh K, Nishii J (2003) Opt. Lett. 28:2491

    Article  PubMed  ADS  Google Scholar 

  8. Taccheo S, Della Valle G, Osellame R, Cerullo G, Chiodo N, Laporta P, Svelto O, Killi A, Morgner U, Lederer M, Kopf D (2004) Opt. Lett. 29:2626

    Article  PubMed  ADS  Google Scholar 

  9. Steinert RF, Puliafito CA (1986) The Nd:YAG Laser in Ophthalmology. Saunders, Philadelphia

    Google Scholar 

  10. Vogel A, Hentschel W, Holzfuss J, Lauterborn W (1986) Ophthalmology 93:1259

    PubMed  Google Scholar 

  11. Ratkay-Traub I, Ferincz IE, Juhasz T, Kurtz RM, Krueger RR (2003) J. Refract. Surg. 19:94

    PubMed  Google Scholar 

  12. Heisterkamp A, Mamom T, Kermani O, Drommer W, Welling H, Ertmer W, Lubatschowski H (2003) Graef. Arch. Clin. Exp. 241:511

    Article  Google Scholar 

  13. Juhasz T, Loesel FH, Kurtz RM, Horvath C, Bille JF, Mourou G (1999) IEEE J. Sel. Top. Quantum Electron. 5:902

    Article  Google Scholar 

  14. Han M, Zickler L, Giese G, Walter M, Loesel FH, Bille JF (2004) J. Biomed. Opt. 9:760

    Article  PubMed  Google Scholar 

  15. Vogel A, Nahen K, Theisen D (1996) IEEE J. Sel. Top. Quantum Electron. 2:847

    Article  Google Scholar 

  16. Heisterkamp A, Ripken T, Lubatschowski H, Mamom T, Drommer W, Welling H, Ertmer W (2002) Appl. Phys. B 74:419

    Article  ADS  Google Scholar 

  17. Liu W, Kosareva O, Golubtsov IS, Iwasaki A, Becker A, Kandidov VP, Chin SL (2003) Appl. Phys. B 76:215

    Article  ADS  Google Scholar 

  18. Mao SS, Quéré F, Guizard S, Mao X, Russo RE, Petite G, Martin P (2004) Appl. Phys. A 79:1695

    Article  ADS  Google Scholar 

  19. Kasparian J, Solle J, Richard M, Wolf J-P (2004) Appl. Phys. B 79:947

    Article  ADS  Google Scholar 

  20. Kolesik M, Wright EM, Moloney JV (2004) Phys. Rev. Lett. 92:253901

    Article  PubMed  ADS  Google Scholar 

  21. Arnold CL, Heisterkamp A, Ertmer W, Lubatschowski H (2005) Appl. Phys. B 80:247

    Article  ADS  Google Scholar 

  22. Fuchs U, Zeitner UD, Tünnermann A (2005) Opt. Express 13:3852

    Article  ADS  Google Scholar 

  23. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Science 239:487

    Article  PubMed  ADS  Google Scholar 

  24. Markham AF (1993) Brit. Med. J. 306:441

    PubMed  Google Scholar 

  25. Bustin SA (2000) J. Mol. Endocrinol. 25:169

    Article  PubMed  Google Scholar 

  26. Isenberg G, Bielser W, Meier-Ruge W, Remy E (1976) J. Microsc. 107:19

    PubMed  Google Scholar 

  27. Meier-Ruge W, Bielser W, Remy E, Hillenkamp F, Nitsche R, Unsöld R (1976) Histochem. J. 8:387

    Article  PubMed  Google Scholar 

  28. Schütze K, Pösl H, Lahr G (1998) Cell. Mol. Biol. 44:735

    Google Scholar 

  29. Schütze K, Lahr G (1998) Nat. Biotechnol. 16:737

    Article  PubMed  Google Scholar 

  30. Lahr G (2000) Lab. Invest. 80:1477

    PubMed  Google Scholar 

  31. K. Lorenz, Mechanismen des Katapultierens biologischer Strukturen mit UV-Laserpulsen. Diploma Thesis, University of Applied Science Lübeck (2004) [in German]. Accessible through vogel@bmo.uni-luebeck.de

  32. Sims CE, Meredith GD, Krasieva TB, Berns MW, Tromberg BJ, Allbritton NL (1998) Anal. Chem. 700:4570

    Article  Google Scholar 

  33. Rau KR, Guerra A, Vogel A, Venugopalan V (2004) Appl. Phys. Lett. 84:2940

    Article  ADS  Google Scholar 

  34. Berns MW, Aist J, Edwards J, Strahs K, Girton J, McNeil P, Kitzes JB, Hammer-Wilson M, Liaw L-H, Siemens A, Koonce M, Peterson S, Brenner S, Burt J, Walter R, Bryant PJ, van Dyk D, Coulombe J, Cahill T, Berns GS (1981) Science 213:505

    Article  PubMed  ADS  Google Scholar 

  35. Liang H, Wright WH, Cheng S, He W, Berns MW (1993) Exp. Cell Res. 204:110

    Article  PubMed  Google Scholar 

  36. Greulich KO (1999) Micromanipulation by Light in Biology and Medicine. Birkhäuser, Basel Boston Berlin

    Google Scholar 

  37. König K, Riemann I, Fritsche W (2001) Opt. Lett. 26:819

    Article  ADS  Google Scholar 

  38. Sato S, Higurashi E, Taguchi Y, Inaba H (1992) Appl. Phys. B 54:531

    Article  ADS  Google Scholar 

  39. Schütze K, Clement-Sengewald A (1994) Nature 368:667

    Article  PubMed  ADS  Google Scholar 

  40. Neev J, Tadir Y, Ho P, Berns MW, Asch RH, Ord T (1992) J. Assist. Reprod. Genet. 9:513

    Article  PubMed  Google Scholar 

  41. Antinori S, Panci C, Selman HA, Caffa B, Dani G, Versaci C (1996) Hum. Reprod. 11:590

    PubMed  Google Scholar 

  42. Rink K, Delacretaz G, Salathé R, Senn A, Noccera D, Germond M, De Grandi P, Fakan S (1996) Laser. Surg. Med. 18:52

    Article  Google Scholar 

  43. Mantoudis E, Podsiadly BT, Gorgry A, Venkat G, Craft IL (2001) Hum. Reprod. 16:2182

    Article  PubMed  Google Scholar 

  44. Tsukakoshi M, Kurata S, Nomiya Y, Ikawa Y, Kasuya T (1984) Appl. Phys. B 35:135

    Article  ADS  Google Scholar 

  45. Kurata S-I, Tsukakoshi M, Kasuya T, Ikawa Y (1986) Exp. Cell Res. 162:372

    Article  PubMed  Google Scholar 

  46. Tao W, Wilkinson J, Stanbridge E, Berns MW (1987) Proc. Natl. Acad. Sci. USA 84:4180

    Article  PubMed  ADS  Google Scholar 

  47. Palumbo G, Caruso M, Crescenzi E, Tecce MF, Roberti G, Colasanti A (1996) J. Photochem. Photobiol. B 36:41

    Article  PubMed  Google Scholar 

  48. Krasieva TB, Chapman CF, LaMorte VJ, Venugopalan V, Berns MW, Tromberg BJ (1998) Proc. SPIE 3260:38

    Article  ADS  Google Scholar 

  49. Buer CS, Gahagan KT, Swartzlander Jr GS, Weathers PJ (1998) Biotechnol. Bioeng. 60:348

    Article  PubMed  Google Scholar 

  50. Soughayer JS, Krasieva T, Jacobson SC, Ramsey JM, Tromberg BC, Albritton NL (2000) Anal. Chem. 72:1342

    Article  PubMed  Google Scholar 

  51. Shirahata Y, Ohkohchi N, Itagak H, Satomi S (2001) J. Invest. Med. 49:184

    Article  Google Scholar 

  52. Schneckenburger H, Hendiger A, Sailer R, Strauss WSL, Schmitt M (2002) J. Biomed. Opt. 7:410

    Article  PubMed  Google Scholar 

  53. Tirlapur UK, König K (2002) Nature 418:290

    Article  PubMed  ADS  Google Scholar 

  54. Mohanty SK, Sharma M, Gupta P (2003) Biotechnol. Lett. 25:895

    Article  PubMed  Google Scholar 

  55. Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E (2003) Mol. Ther. 8:342

    Article  PubMed  Google Scholar 

  56. Paterson L, Agate B, Comrie M, Ferguson R, Lake TK, Morris JE, Carruthers AE, Brown CTA, Sibbett W, Bryant PE, Gunn-Moore F, Riches AC, Dholakia K (2005) Opt. Express 13:595

    Article  ADS  Google Scholar 

  57. Huettmann G, Birngruber R (1999) IEEE J. Sel. Top. Quantum Electron. 5:954

    Article  Google Scholar 

  58. Jay DG, Sakurai T (1999) Biochim. Biophys. Acta 1424(2–3):M39

    PubMed  Google Scholar 

  59. Hüttmann G, Serbin J, Radt B, Lange B, Birngruber R (2001) Proc. SPIE 4257:398

    Article  ADS  Google Scholar 

  60. Beck S, Sakurai T, Eustace B, Beste G, Schier R, Rudert F, Jay DG (2002) Proteomics 2:247

    Article  PubMed  Google Scholar 

  61. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Biophys. J. 84:4023

    PubMed  Google Scholar 

  62. C.P. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, G. Hüttmann, J Biomed. Opt. 10 (2005) in press

  63. Tschachotin S (1912) Biol. Zbl. 32:623

    Google Scholar 

  64. Bessis M, Nomarski G (1960) J. Biophys. Biochem. Cy. 8:777

    Google Scholar 

  65. Moreno G, Lutz M, Bessis M (1969) Int. Rev. Exp. Pathol. 7:99

    PubMed  Google Scholar 

  66. Bessis M, Gires F, Mayer G, Nomarski G (1962) C.R. Acad. Sci. III – Vie 255:1010

    Google Scholar 

  67. Amy RL, Storb R (1965) Science 150:756

    Article  ADS  Google Scholar 

  68. Storb R, Amy RL, Wertz RK, Fauconnier B, Bessis M (1966) J. Cell Biol. 31:11

    Article  PubMed  Google Scholar 

  69. Berns MW, Olson RS, Rounds DE (1969) Nature 221:74

    Article  ADS  Google Scholar 

  70. Berns MW, Cheng WK, Floyd AD, Ohnuki Y (1971) Science 171:903

    Article  PubMed  ADS  Google Scholar 

  71. Stonington OG, Spurck TP, Snyder JA, Picket-Heaps JD (1989) Protoplasma 153:62

    Article  Google Scholar 

  72. Bessis M (1971) Adv. Biol. Med. Phys. 13:209

    Google Scholar 

  73. Calmettes PP, Berns MW (1983) Proc. Natl. Acad. Sci. USA 80:7197

    Article  PubMed  ADS  Google Scholar 

  74. Khodjakov A, Cole RW, Rieder CL (2000) Curr. Biol. 10:59

    Article  PubMed  Google Scholar 

  75. Colombelli J, Grill SW, Stelzer EHK (2004) Rev. Sci. Instrum. 75:472

    Article  ADS  Google Scholar 

  76. Botvinick EL, Venugopalan V, Shah JV, Liaw LH, Berns M (2004) Biophys. J. 87:4203

    Article  PubMed  Google Scholar 

  77. Sacconi L, Tolic-Norrelyke IM, Antolini R, Pavone FS (2005) J. Biomed. Opt. 10:014002

    Article  Google Scholar 

  78. Aist JR, Liang H, Berns MW (1993) J. Cell Sci. 104:1207

    PubMed  Google Scholar 

  79. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A (2004) Nature 432:822

    Article  PubMed  ADS  Google Scholar 

  80. Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer DX, Nojin GD, Rockwell BA, Birngruber R (1999) Appl. Phys. B 68:271

    Article  ADS  Google Scholar 

  81. Noack J, Vogel A (1999) IEEE J. Quantum Electron. 35:1156

    Article  ADS  Google Scholar 

  82. Meldrum RA, Botchway SW, Wharton CW, Hirst GJ (2003) EMBO Rep. 12:1144

    Article  Google Scholar 

  83. Watanabe W, Arakawa N, Matsunaga S, Higashi T, Fukui K, Isobe K, Itoh K (2004) Opt. Express 12:4203

    Article  ADS  Google Scholar 

  84. Heisterkamp A, Maxwell IZ, Mazur E, Underwood JM, Nickerson JA, Kumar S, Ingber DE (2005) Opt. Express 13:3690

    Article  PubMed  ADS  Google Scholar 

  85. Shen N, Datta D, Schaffer CB, LeDuc P, Ingber DE, Mazur E (2005) Mech. Chem. Biosyst. 2:17

    Google Scholar 

  86. Supatto W, Dèbarre D, Moulia B, Brouzés E, Martin J-L, Farge E, Beaurepaire E (2005) Proc. Natl. Acad. Sci. USA 102:1047

    Article  PubMed  ADS  Google Scholar 

  87. S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, A.D.T. Samuel, J. Neurosci. 25 (2005) in press

  88. König K, Krauss O, Riemann I (2002) Opt. Express 10:171

    ADS  Google Scholar 

  89. Riemann I, Anhut T, Stracke F, Le Harzic R, König K (2005) Proc. SPIE 5695:216

    Article  ADS  Google Scholar 

  90. Oraevsky AA, Da Silva LB, Rubenchik AM, Feit MD, Glinsky ME, Perry MD, Mammini BM, Small IV W, Stuart B (1996) IEEE J. Sel. Top. Quantum Electron. 2:801

    Article  Google Scholar 

  91. Vogel A, Noack J (2001) Proc. SPIE 4260:83

    Article  ADS  Google Scholar 

  92. Khodjakov A, Cole RW, Oakley BR, Rieder CL (1997) Cell Motil. Cytoskel. 38:311

    Article  Google Scholar 

  93. Grill SW, Howard J, Schäffer E, Stelzer EHK, Hyman AA (2003) Science 301:518

    Article  ADS  Google Scholar 

  94. Colombelli J, Reynaud EG, Rietdorf J, Pepperkork R, Stelzer EHK (2005) Traffic 6:1093

    Article  PubMed  Google Scholar 

  95. Smith NI, Fujita K, Kaneko T, Katoh K, Nakamura O, Kawata S, Takamatsu T (2001) Appl. Phys. Lett. 79:1208

    Article  ADS  Google Scholar 

  96. Vogel A, Busch S, Parlitz U (1996) J. Acoust. Soc. Am. 100:148

    Article  ADS  Google Scholar 

  97. Vogel A, Noack J, Hüttmann G, Paltauf G (2002) Proc. SPIE 4633:23

    Article  ADS  Google Scholar 

  98. Oehring H, Riemann I, Fischer P, Halbhuber KJ, König K (2000) Scanning 22:263

    Article  PubMed  Google Scholar 

  99. Docchio F, Sachhi CA, Marshall J (1986) Lasers Ophthalmol. 1:83

    Google Scholar 

  100. Sacchi CA (1991) J. Opt. Soc. Am. B 8:337

    ADS  MathSciNet  Google Scholar 

  101. Williams F, Varama SP, Hillenius S (1976) J. Chem. Phys. 64:1549

    Article  ADS  Google Scholar 

  102. Grand D, Bernas A, Amouyal E (1979) Chem. Phys. 44:73

    Article  Google Scholar 

  103. Nikogosyan DN, Oraevsky AA, Rupasov V (1983) Chem. Phys. 77:131

    Article  Google Scholar 

  104. Keldysh LV (1965) Sov. Phys. JETP 20:1307

    MathSciNet  Google Scholar 

  105. Ammosov MV, Delone NB, Krainov VP (1986) Sov. Phys. JETP 64:1191

    Google Scholar 

  106. Ready JF (1971) Effects of High Power Laser Radiation. Academic, Orlando, p 261

    Google Scholar 

  107. Thornber KK (1981) J. Appl. Phys. 52:279

    Article  ADS  Google Scholar 

  108. Arnold D, Cartier E (1992) Phys. Rev. B 46:15102

    Article  ADS  Google Scholar 

  109. Ridley BK (1999) Quantum Processes in Semiconductors. Oxford University Press, Oxford

    Google Scholar 

  110. Kennedy PK (1995) IEEE J. Quantum Electron. 31:2241

    Article  ADS  Google Scholar 

  111. Feng Q, Moloney JV, Newell AC, Wright EM, Cook K, Kennedy PK, Hammer DX, Rockwell BA, Thompson CR (1997) IEEE J. Quantum Electron. 33:127

    Article  ADS  Google Scholar 

  112. Tien AC, Backus S, Kapteyn H, Murnane M, Mourou G (1999) Phys. Rev. Lett. 82:3883

    Article  ADS  Google Scholar 

  113. Kaiser A, Rethfeld B, Vicanek M, Simon G (2000) Phys. Rev. B 61:11437

    Article  ADS  Google Scholar 

  114. Keldysh LV (1960) Sov. Phys. JETP 11:509

    Google Scholar 

  115. Rethfeld B (2004) Phys. Rev. Lett. 92:187401

    Article  PubMed  ADS  Google Scholar 

  116. Stuart BC, Feit MD, Hermann S, Rubenchik AM, Shore BW, Perry MD (1996) Phys. Rev. B 53:1749

    Article  ADS  Google Scholar 

  117. Bloembergen N (1974) IEEE J. Quantum Electron. 10:375

    Article  ADS  Google Scholar 

  118. Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q (2005) Opt. Lett. 30:320

    Article  PubMed  ADS  Google Scholar 

  119. Joglekar AP, Liu H, Spooner GJ, Meyhöfer E, Mourou G, Hunt AL (2003) Appl. Phys. B 77:25

    Article  Google Scholar 

  120. Joglekar AP, Liu H, Meyhöfer E, Mourou G, Hunt AL (2004) Proc. Nat. Acad. Sci. 101:5856

    Article  PubMed  ADS  Google Scholar 

  121. Feit MD, Komashko AM, Rubenchik AM (2004) Appl. Phys. A 79:1657

    Article  ADS  Google Scholar 

  122. Hammer DX, Thomas RJ, Noojin GD, Rockwell BA, Kennedy PA, Roach WP (1996) IEEE J. Quantum Electron. 3:670

    Article  ADS  Google Scholar 

  123. Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F (1998) Phys. Rev. Lett. 80:4076

    Article  ADS  Google Scholar 

  124. Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  125. Docchio F (1988) Europhys. Lett. 6:407

    Article  ADS  Google Scholar 

  126. Nahen K, Vogel A (1996) IEEE J. Sel. Top. Quantum Electron. 2:861

    Article  Google Scholar 

  127. J. Noack, Optischer Durchbruch in Wasser mit Laserpulsen zwischen 100 ns und 100 fs, Ph.D. Dissertation, University of Lübeck (1998)

  128. Noack J, Hammer DX, Noojin GD, Rockwell BA, Vogel A (1998) J. Appl. Phys. 83:7488

    Article  ADS  Google Scholar 

  129. Du D, Liu X, Mourou G (1996) Appl. Phys. B 63:617

    ADS  Google Scholar 

  130. D. Du, J. Squier, R. Kurtz, V. Elner, X. Liu, G. Güttmann, G. Mourou, in Ultrafast Phenomena IX, ed. by P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (Springer, New York 1994), p. 254

  131. Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG (1989) Arch. Ophthalmol. – Chic. 107:587

    Google Scholar 

  132. Niemz MH, Hoppeler TP, Juhasz T, Bille FJ (1993) Lasers Light Ophthalmol. 5:149

    Google Scholar 

  133. Hughes TP (1975) Plasmas and Laser Light. Adam Hilger, Bristol

    Google Scholar 

  134. Godwin RP, van Kessel CGM, Olsen JN, Sachsenmaier P, Sigel R (1977) Z. Naturforsch. 32a:1100

    ADS  Google Scholar 

  135. von der Linde D, Schüler H (1996) J. Opt. Soc. Am. B 13:216

    Article  ADS  Google Scholar 

  136. Hammer DX, Jansen ED, Frenz M, Noojin GD, Thomas RJ, Noack J, Vogel A, Rockwell BA, Welch AJ (1997) Appl. Opt. 36:5630

    Article  ADS  Google Scholar 

  137. Fan CH, Sun J, Longtin JP (2002) J. Appl. Phys. 91:2530

    Article  ADS  Google Scholar 

  138. Fan CH, Sun J, Longtin JP (2002) J. Heat Trans. – T. ASME 124:275

    Article  Google Scholar 

  139. Rayner DM, Naumov A, Corkum PB (2005) Opt. Express 13:3208

    Article  ADS  Google Scholar 

  140. Born M, Wolf E (1970) Principles of Optics. Pergamon Press, Oxford

    Google Scholar 

  141. Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2004) Opt. Lett. 29:1408

    Article  PubMed  ADS  Google Scholar 

  142. Grill S, Stelzer EHK (1999) J. Opt. Soc. Am. A 16:2658

    Article  ADS  Google Scholar 

  143. Garret BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara PF, Bartels DM, Becker KH, Bowen KH, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wittig C, Zwier TS (2005) Chem. Rev. 105:355

    Article  PubMed  Google Scholar 

  144. Tirlapur UK, König K, Peuckert C, Krieg R, Halbhuber K-J (2001) Exp. Cell Res. 263:88

    Article  PubMed  Google Scholar 

  145. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287:1658

    Article  ADS  Google Scholar 

  146. H. Hotop, in L.G. Christophorou, J.K. Olthoff (eds.) Proceedings of the International Symposium on Gaseous Dielectrics IX, Ellicott City, MD, USA, 22–25 May 2001 (Kluwer Academic/Plenum, New York, 2001), p. 3

  147. Gohlke S, Illenberger E (2002) Europhys. News 33:207

    Article  ADS  Google Scholar 

  148. Huels MA, Boudaiffa B, Cloutier P, Hunting D, Sanche L (2003) J. Am. Chem. Soc. 125:4467

    Article  PubMed  Google Scholar 

  149. Mitchinson T, Kirschner M (1984) Nature 312:237

    Article  PubMed  ADS  Google Scholar 

  150. Jánosi IM, Chrétien D, Flyvberg H (2002) Biophys. J. 83:1317

    Article  PubMed  Google Scholar 

  151. H.O. Jeschke, E.M. Garcia, in Nonlinear Optics, Quantum Optics and Ultrafast Phenomena with X-rays, ed. by B.W. Adams (Kluwer Academic, Boston Dordrecht London 2003), p. 175

  152. Bulgakova NM, Stoian R, Rosenfeld A, Hertel IV, Campbell EEB (2004) Phys. Rev. B 69:054102

    Article  ADS  Google Scholar 

  153. Nolte S, Momma C, Jacobs H, Tünnermann A, Chikov BN, Wellegehausen B, Welling H (1997) J. Opt. Soc. Am. B 14:2716

    Article  ADS  Google Scholar 

  154. Kuchling H (1991) Taschenbuch der Physik, 13th edn. Fachbuchverlag Leipzig

    Google Scholar 

  155. Paltauf G, Schmidt-Kloiber H (1999) Appl. Phys. A 68:525

    Article  ADS  Google Scholar 

  156. Paltauf G, Dyer P (2003) Chem. Rev. 103:487

    Article  PubMed  Google Scholar 

  157. Sigrist MW, Kneubühl FK (1978) J. Acoust. Soc. Am. 64:1652

    Article  ADS  Google Scholar 

  158. Paltauf G, Schmidt-Kloiber H (1996) Appl. Phys. A 62:303

    Article  ADS  Google Scholar 

  159. Skripov VP, Sinitsin EN, Pavlov PA, Ermakov GV, Muratov GN, Bulanov NV, Baidakov VG (1988) Thermophysical Properties of Liquids in the Metastable (Superheated) State. Gordon and Breach, New York

    Google Scholar 

  160. Köstli KP, Frenz M, Bebie H, Weber HP (2001) Phys. Med. Biol. 46:1863

    Article  PubMed  Google Scholar 

  161. Cox BT, Beard PC (2005) J. Acoust. Soc. Am. 117:3616

    Article  PubMed  ADS  Google Scholar 

  162. Brennen CE (1995) Cavitation and Bubble Dynamics. Oxford University Press, New York Oxford

    Google Scholar 

  163. Kiselev SB (1999) Physica A 269:252

    Article  ADS  Google Scholar 

  164. Kiselev SB, Ely JF (2001) Physica A 299:357

    Article  ADS  Google Scholar 

  165. Debenedetti PG (1996) Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton

    Google Scholar 

  166. Fisher JC (1948) J. Appl. Phys. 19:1062

    Article  ADS  Google Scholar 

  167. Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Science 254:829

    Article  ADS  Google Scholar 

  168. Garrison B, Itina TE, Zhigilei LV (2003) Phys. Rev. E 68:041501

    Article  ADS  Google Scholar 

  169. F.R. Gilmore, Calif. Inst. Tech. Rep. 26-4 (1952)

  170. Knapp RT, Daily JW, Hammitt FG (1971) Cavitation. McGraw-Hill, New York , pp 117–131

    Google Scholar 

  171. Staudenraus J, Eisenmenger W (1993) Ultrasonics 31:267

    Article  Google Scholar 

  172. Paltauf G, Schmidt-Kloiber H (1997) J. Appl. Phys. 82:1525

    Article  ADS  Google Scholar 

  173. Noack J, Vogel A (1998) Appl. Opt. 37:4092

    Article  ADS  Google Scholar 

  174. Rice MH, Walsh JM (1957) J. Chem. Phys. 26:824

    Article  ADS  Google Scholar 

  175. Barnes PA, Rieckhoff KE (1968) Appl. Phys. Lett. 13:282

    Article  ADS  Google Scholar 

  176. Stolarski J, Hardman J, Bramlette CG, Noojin GD, Thomas RJ, Rockwell BA, Roach WP (1995) Proc. SPIE 2391:100

    Article  ADS  Google Scholar 

  177. Chapyak EJ, Godwin RP, Vogel A (1997) Proc. SPIE 2975:335

    Article  ADS  Google Scholar 

  178. Zysset B, Fujimoto JG, Deutsch TF (1989) Appl. Phys. B 48:139

    Article  ADS  Google Scholar 

  179. Glezer EN, Mazur E (1997) Appl. Phys. Lett. 71:882

    Article  ADS  Google Scholar 

  180. Schaffer CB, Nishimura N, Mazur E (1998) Proc. SPIE 3451:2

    Article  ADS  Google Scholar 

  181. Juhasz T, Kastis GA, Suarez C, Bor Z, Bron WE (1996) Laser. Surg. Med. 19:23

    Article  Google Scholar 

  182. Schaffer CB, Nishimura N, Glezer EN, Kim AM-T, Mazur E (2002) Opt. Express 10:196

    ADS  Google Scholar 

  183. C.P. Cain, R.J. Thomas, G.D. Noojin, D.J. Stolarski, P.K. Kennedy, G.D. Buffington, B.A. Rockwell, Graef. Arch. Clin. Exp. Published online (7 July 2004)

  184. Vogel A, Nahen K, Theisen D, Birngruber R, Thomas RJ, Rockwell BA (1999) Appl. Opt. 38:3636

    Article  ADS  Google Scholar 

  185. Glebov LB, Efimov OM, Petrovski GT, Rogovtsev PN (1984) Sov. J. Quantum Electron. 15:226

    Article  ADS  Google Scholar 

  186. Efimov OM (2004) J. Opt. Technol. 71:338

    Google Scholar 

  187. Soileau MJ, Williams WF, Mansour N, Van Stryland EW (1989) Opt. Eng. 28:1133

    ADS  Google Scholar 

  188. Dayton PA, Chomas JE, Lunn AFH, Allen JS, Lindner JR, Simon SI, Ferrara KW (2001) Biophys. J. 80:1547

    PubMed  Google Scholar 

  189. Lin CP, Kelly MW, Sibayan SAB, Latina MA, Anderson RR (1999) IEEE J. Sel. Top. Quantum Electron. 5:963

    Article  Google Scholar 

  190. Leszczynski D, Pitsillides CM, Pastila RK, Anderson RR, Lin CP (2001) Radiat. Res. 156:399

    Article  PubMed  Google Scholar 

  191. Lord Rayleigh (1917) Philos. Mag. 34:94

    Google Scholar 

  192. Neumann J, Brinkmann R (2005) Proc. SPIE 5863:586307

    Article  Google Scholar 

  193. Needham D, Nunn RS (1990) Biophys. J. 58:997

    PubMed  Google Scholar 

  194. V. Kotaidis, A. Plech, Appl. Phys. Lett. 87, (2005) in press

  195. Lokhandwalla M, Sturtevant B (2001) Phys. Med. Biol. 46:413

    Article  PubMed  Google Scholar 

  196. Boal D (2002) Mechanics of the Cell. Cambridge University Press, Cambridge

    Google Scholar 

  197. Wolfrum B, Mettin R, Kurz T, Lauterborn W (2002) Appl. Phys. Lett. 81:5060

    Article  ADS  Google Scholar 

  198. M.J. Zohdy, C. Tse, J.Y. Ye, M. O’Donnell, IEEE T. Ultrason. Ferr. 52 (2005) in press

  199. Crum LA (1984) Ultrasonics 22:215

    Article  Google Scholar 

  200. Leighton TG (1994) The Acoustic Bubble. Academic, London

    Google Scholar 

  201. Vogel A (2001) Optical Breakdown in Water and Ocular Media, and Its Use for Intraocular Photodisruption. Shaker Verlag, Aachen

    Google Scholar 

  202. Koester HJ, Baur D, Uhl R, Hell SW (1999) Biophys. J. 77:2226

    Article  PubMed  Google Scholar 

  203. Hopt A, Neher E (2001) Biophys. J. 80:2029

    PubMed  Google Scholar 

  204. Eggeling C, Volkmer A, Seidel CAM (2005) Chem. Phys. Chem. 6:791

    PubMed  Google Scholar 

  205. Masters BR, So PTC, Buehler C, Barry N, Sutin JD, Mantulin WW, Gratton E (2004) J. Biomed. Opt. 9:1265

    Article  PubMed  Google Scholar 

  206. Roegener J, Brinkmann R, Lin CP (2004) J. Biomed. Opt. 9:367

    Article  PubMed  Google Scholar 

  207. Watanabe W, Matsungata S, Shimada T, Higashi T, Fukui K, Itoh K (2005) Med. Laser Appl. 20:185

    Article  Google Scholar 

  208. Neumann J, Brinkmann R (2005) J. Biomed. Opt. 10:024001

    Article  PubMed  Google Scholar 

  209. König K, Liang H, Berns MW, Tromberg BJ (1995) Nature 377:20

    Article  PubMed  ADS  Google Scholar 

  210. König K (2000) J. Microsc. 200:83

    Article  PubMed  Google Scholar 

  211. K. König, in Methods in Cellular Imaging, ed. by A. Periasamy (Oxford University Press, Oxford 2001), p. 236

  212. J. Pearce, S. Thomsen, in Optical–Thermal Response of Laser-Irradiated Tissue, ed. by A.J. Welch, M. van Germert (Plenum, New York 1995), p. 561

  213. Simanowski D, Sarkar M, Irani A, O’Connel-Rodwell C, Contag C, Schwettman A, Palanker D (2005) Proc. SPIE 5695:254

    Article  ADS  Google Scholar 

  214. Descloux L, Rastegar S, Delacretaz G, Hollis A, Rink K (1998) Proc. SPIE 3195:137

    Article  ADS  Google Scholar 

  215. Denk WJ, Strickler JH, Webb WW (1990) Science 248:73

    Article  ADS  Google Scholar 

  216. So PTC (1998) Opt. Express 3:312

    Article  ADS  Google Scholar 

  217. König K, Becker TW, Fischer P, Riemann I, Halbhuber KJ (1999) Opt. Lett. 24:113

    Article  ADS  Google Scholar 

  218. Guo Y, Ho PP, Tirksliunas A, Liu F, Alfano RR (1997) Opt. Lett. 22:1323

    Article  ADS  Google Scholar 

  219. Moreaux L, Sandre O, Mertz J (2000) J. Opt. Soc. Am. B 17:1685

    Article  ADS  Google Scholar 

  220. Chu S-W, Liu TM, Sun C-K, Lin C-Y, Tsai H-J (2003) Opt. Express 11:933

    ADS  Google Scholar 

  221. Fu L, Gan X, Gu M (2005) Opt. Lett. 30:385

    Article  PubMed  ADS  Google Scholar 

  222. W.J. Denk, D.W. Piston, W.W. Webb, in Handbook of Biological Confocal Microscopy, ed. by J.B. Prawley (Plenum, New York 1995), p. 445

  223. Schönle A, Hell S (1998) Opt. Lett. 23:325

    Article  ADS  Google Scholar 

  224. Berns MW, Wang Z, Dunn A, Wallace V, Venugopalan V (2000) Proc. Natl. Acad. Sci. USA 97:9504

    Article  PubMed  ADS  Google Scholar 

  225. Hosokawa Y, Takabayashi H, Miura S, Shukunami C, Hiraki Y, Masuhara H (2004) Appl. Phys. A 79:795

    Article  ADS  Google Scholar 

  226. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biomed. Microdev. 6:139

    Article  Google Scholar 

  227. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ (2004) Tissue Eng. 10:483

    Article  PubMed  Google Scholar 

  228. Ripken T, Oberheide U, Ziltz C, Ertmer W, Gerten G, Lubatschowski H (2005) Proc. SPIE 5688:278

    Article  ADS  Google Scholar 

  229. Toth CA, Narayan DG, Noojin GD, Winter KP, Rockwell BA, Roach WP (1997) Invest. Ophth. Vis. Sci. 38:2204

    Google Scholar 

  230. Rockwell BA, Hammer DX, Hopkins RA, Payne DJ, Toth CA, Roach WP, Druessel JJ, Kennedy PK, Amnotte RE, Eilert B, Phillips S, Noojin GD, Stolarski DJ, Cain C (1999) J. Laser Appl. 11:42

    Article  PubMed  Google Scholar 

  231. Schaffer CB, García JF, Mazur E (2003) Appl. Phys. A 71:351

    Article  ADS  Google Scholar 

  232. Bass M (ed) (1995) Handbook of Optics, vol II. McGraw-Hill, New York

    Google Scholar 

  233. Efimov OM, Gabel K, Garnov SV, Glebov LB, Grantham S, Richardson M, Soileau MJ (1998) J. Opt. Soc. Am. B 15:193

    Article  ADS  Google Scholar 

  234. Hertwig A, Martin S, Krüger J, Kautek W (2004) Appl. Phys. A 79:1075

    Article  ADS  Google Scholar 

  235. Watanabe W, Toma T, Yamada K, Nishii J, Hayashi K, Itoh K (2000) Opt. Lett. 25:1669

    Article  ADS  Google Scholar 

  236. Streltsov AM, Borelli NF (2002) J. Opt. Soc. Am. B 19:2496

    Article  ADS  Google Scholar 

  237. Poumellec B, Sudrie L, Franco M, Prade B, Mysyrowicz A (2003) Opt. Express 9:1070

    Article  ADS  Google Scholar 

  238. Bhardwaj VR, Corkum PB, Rayner DM, Hnatowsky C, Simova E, Taylor RS (2004) Opt. Lett. 29:1312

    Article  PubMed  ADS  Google Scholar 

  239. Juodkazis S, Yamasaki K, Mizeikis V, Matsuo S, Misawa H (2004) Appl. Phys. A 79:1549

    ADS  Google Scholar 

  240. Saul A, Wagner W (1989) J. Phys. Chem. Ref. Data 18:1537

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vogel.

Additional information

PACS

42.62.Be; 72.20.Jv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, A., Noack, J., Hüttman, G. et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005). https://doi.org/10.1007/s00340-005-2036-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2036-6

Keywords

Navigation