Skip to main content

Diode laser spectroscopy of H2O and CO2 in the 1.877-μm region for the in situ monitoring of the Martian atmosphere

Abstract

A diode laser spectrometer was used in the laboratory to study H2O and CO2 line intensities and self-broadening coefficients around 1.877 μm. The spectral region ranging from 5327 cm-1 to 5329 cm-1, which is suitable for the in situ sensing of water vapor and carbon dioxide in the Martian atmosphere, was studied using a distributed feedback GaInSb diode laser from Nanoplus GmbH. We have studied one line from the (011)←(000)band of H2O and two lines from the (0112)I←(000) band of CO2. The results of intensity and self-broadening measurements are compared to available databases, ab initio calculations and previous experimental determinations. Finally, we discuss the current development of the tunable diode laser absorption spectrometer instrument, a laser diode sensor devoted to the in situ measurement of H2O and CO2 in the Martian atmosphere.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Titov DV (2002) Adv. Space Res. 29:183

    Article  ADS  Google Scholar 

  2. 2.

    Tokano T (2003) Icarus 164:50

    Article  ADS  Google Scholar 

  3. 3.

    Bertaux JL, Montmessin F (2001) J. Geophys. Res. 106:32879

    Article  ADS  Google Scholar 

  4. 4.

    Krasnopolsky V (2000) Icarus 148:597

    Article  ADS  Google Scholar 

  5. 5.

    Durry G, Megie G (1999) Appl. Opt. 38:7342

    ADS  Google Scholar 

  6. 6.

    Durry G, Megie G (2000) Appl. Opt. 39:5601

    ADS  Google Scholar 

  7. 7.

    Durry G, Amarouche N, Zéninari V, Parvitte B, Le Barbu T, Ovarlez J (2004) Spectrochim. Acta A 60:3371

    Article  Google Scholar 

  8. 8.

    Durry G, Pouchet I, Amarouche N, Danguy T, Megie G (2000) Appl. Opt. 39:5609

    ADS  Article  Google Scholar 

  9. 9.

    L.S. Rothman et al., The HITRAN molecular spectroscopic database and HAWKS, 2000 edn. ftp://cfa-ftp.harvard.edu/pub/HITRAN

  10. 10.

    L.S. Rothman et al., The HITRAN molecular spectroscopic database and HAWKS, 2004 edn. ftp://cfa-ftp.harvard.edu/pub/HITRAN

  11. 11.

    A. Jenouvrier et al., personal communication, to be published

  12. 12.

    Toth RA (2005) J. Quant. Spectrosc. Radiat. Transfer 94:51

    Article  ADS  Google Scholar 

  13. 13.

    Partridge H, Schwenke DW (1997) J. Chem. Phys. 106:4618

    Article  ADS  Google Scholar 

  14. 14.

    Giver LP, Brown LR, Chackerian Jr C, Freedman RS (2003) J. Quant. Spectrosc. Radiat. Transfer 78:417

    Article  ADS  Google Scholar 

  15. 15.

    Tashkun S, Perevalov VI, Teffo JL, Tyuterev VG (1999) J. Quant. Spectrosc. Radiat. Transfer 62:571

    Article  ADS  Google Scholar 

  16. 16.

    Humlicek J (1982) J. Quant. Spectrosc. Radiat. Transfer 27:437

    Article  ADS  Google Scholar 

  17. 17.

    Rautian SG, Sobel’man (1967) Sov. Phys. Uspekhi 9:701

    Article  ADS  Google Scholar 

  18. 18.

    Galatry L (1961) Phys. Rev. 122:1218

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Zéninari.

Additional information

PACS

07.57.Ty; 07.87.+v

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Barbu, T., Parvitte, B., Zéninari, V. et al. Diode laser spectroscopy of H2O and CO2 in the 1.877-μm region for the in situ monitoring of the Martian atmosphere. Appl. Phys. B 82, 133–140 (2006). https://doi.org/10.1007/s00340-005-2020-1

Download citation

Keywords

  • Martian Atmosphere
  • HITRAN Database
  • Absorption Path Length
  • Diode Laser Spectroscopy
  • GaInSb