Skip to main content
Log in

On the response of an oscillatory medium to defect generation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the response of a system far from equilibrium close to an oscillatory instability to the induction of phase singularities. We base our investigation on a numerical treatment of the complex Ginzburg–Landau equation (CGLE) in two spatial dimensions, which is considered as an order-parameter equation for lasers and other nonlinear optical systems. Defects are randomly generated by a spatially modulated linear growth rate. In the amplitude-turbulent regime, no qualitative change of behaviour can be detected. Phase-turbulent patterns emerging due to the Benjamin–Feir instability are destroyed by the externally injected defects. One observes either states consisting of spiral structures of various sizes which resemble the vortex glass states of the unperturbed system or a travelling wave pattern containing moving topological defects. In parameter space, both states are separated by a well-defined phase boundary which is close to the line separating convectively from absolutely stable travelling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arecchi FT, Boccaletti S, Ramazza PL (1999) Phys. Rep. 318:1

    Article  ADS  Google Scholar 

  2. Lugiato LA, Brambilla M, Gatti A (1999) Adv. At. Mol. Opt. Phys. 40:229

    Google Scholar 

  3. Ikeda K, Daido H, Akimoto O (1980) Phys. Rev. Lett. 45:709

    Article  ADS  Google Scholar 

  4. Moloney JV (1984) Phys. Rev. Lett. 53:556

    Article  ADS  Google Scholar 

  5. Akhmanov SA, Vorontsov MA, Ivanov VY (1988) Sov. Phys. JETP 47:707

    Google Scholar 

  6. D’Alessandro G, Firth WJ (1992) Phys. Rev. A 46:537

    Article  PubMed  ADS  Google Scholar 

  7. D’Angelo EJ, Green C, Tredicce JR, Abraham NB, Balle S, Chen Z, Oppo GL (1992) Physica D 61:6

    Article  MATH  ADS  Google Scholar 

  8. Neubecker R, Tschudi T (1994) J. Mod. Optic. 41:885

    Article  ADS  Google Scholar 

  9. Ackemann T, Logvin Y, Heuer A, Lange W (1995) Phys. Rev. Lett. 75:3450

    Article  PubMed  ADS  Google Scholar 

  10. Arecchi FT, Larichev AV, Ramazza PL, Residori S, Ricklin JC, Vorontsov MA (1995) Opt. Commun. 117:492

    Article  ADS  Google Scholar 

  11. Huyet G, Rica S (1996) Physica D 96:215

    Article  Google Scholar 

  12. Mitschke F, Steinmeyer G, Schwache A (1996) Physica D 96:251

    Article  Google Scholar 

  13. Hochheiser D, Moloney JV, Lega J (1997) Phys. Rev. A 55:R4011

    Article  ADS  Google Scholar 

  14. Mamaev AV, Saffman M (1998) Phys. Rev. Lett. 80:3499

    Article  ADS  Google Scholar 

  15. Farjas J, Hennequin D, Dangoisse D, Glorieux P (1998) Phys. Rev. A 57:580

    Article  ADS  Google Scholar 

  16. Aumann A, Ackemann T, Große Westhoff E, Lange W (2001) Int. J. Bifurcat. Chaos 11:2789

    Article  Google Scholar 

  17. Gomila D, Colet P (2003) Phys. Rev. A 68:011801(R)

    Article  ADS  Google Scholar 

  18. Madelung E (1926) Z. Phys. 40:322

    ADS  Google Scholar 

  19. Coullet P, Gil L, Rocca F (1989) Opt. Commun. 73:403

    Article  ADS  Google Scholar 

  20. Brambilla M, Battipede F, Lugiato LA, Penna V, Prati F, Tamm C, Weiss CO (1991) Phys. Rev. A 43:5114

    Article  PubMed  ADS  Google Scholar 

  21. Staliunas K (1993) Phys. Rev. A 48:1573

    Article  PubMed  ADS  Google Scholar 

  22. Weiss CO, Vaupel M, Staliunas K, Slekys G, Taranenko VB (1999) Appl. Phys. B 68:151

    Article  ADS  Google Scholar 

  23. Graham R, Haken H (1970) Z. Phys. 237:31

    Article  ADS  MathSciNet  Google Scholar 

  24. Frisch M (1995) Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ackemann T, Lange W (2001) Appl. Phys. B 72:21

    ADS  Google Scholar 

  26. Haken H (2004) Synergetics: Introduction and Advanced Topics. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Kuramoto Y (1984) Chemical Oscillations, Waves and Turbulence. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  28. Manneville P (1990) Dissipative Structures and Turbulence. Academic, San Diego, CA

    MATH  Google Scholar 

  29. Cross MC, Hohenberg PC (1993) Rev. Mod. Phys. 65:861

    Article  ADS  Google Scholar 

  30. Staliunas K, Tarroja MFH, Slekys G, Weiss CO (1995) Phys. Rev. A 51:4140

    Article  PubMed  ADS  Google Scholar 

  31. Aranson IS, Kramer L (2002) Rev. Mod. Phys. 74:99

    Article  ADS  MathSciNet  Google Scholar 

  32. Chaté H, Manneville P (1996) Physica A 224:348

    Article  ADS  MathSciNet  Google Scholar 

  33. Huber G, Alstrom P, Bohr T (1992) Phys. Rev. Lett. 69:2380

    Article  PubMed  ADS  Google Scholar 

  34. Bohr T, Huber G, Ott E (1996) Europhys. Lett. 33:589

    Article  ADS  Google Scholar 

  35. Bohr T, Huber G, Ott E (1997) Physica D 106:589

    Article  MathSciNet  Google Scholar 

  36. Staliunas K, Slekys G, Weiss CO (1997) Phys. Rev. Lett. 79:2658

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Friedrich.

Additional information

PACS

47.54.+r; 89.75.Kd; 42.65.Sf; 47.32.Cc; 47.27.Cn; 05.45.-a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Friedrich, R. & Ackemann, T. On the response of an oscillatory medium to defect generation. Appl. Phys. B 81, 969–973 (2005). https://doi.org/10.1007/s00340-005-2014-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2014-z

Keywords

Navigation