Skip to main content
Log in

Intracavity Cr4+:YAG laser absorption analyzed by time-resolved Fourier transform spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A high-resolution time-resolved Fourier transform interferometer is combined with a multimode Cr4+:YAG laser for intracavity laser absorption spectroscopy (ICLAS) experiments. Atmospheric absorption spectra are recorded in the 1.5 μm region with a minimum detectable absorption coefficient equal to 8×10-11 cm-1 Hz-1/2. The broad gain bandwidth of the crystal allows a simultaneous spectral coverage at most equal to 38 nm. The laser tunability covers the 1360–1577 nm range. Water vapor detection domain extends from the 100 ppmv down to the 0.1 ppbv level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baev VM, Latz T, Toschek PE (1999) Appl Phys B 69:171

    Article  ADS  Google Scholar 

  2. Herman M, Lievin J, Vander Auwera J, Campargue A (1999) Global and Accurate Vibration Hamiltonians from High-Resolution Molecular Spectroscopy, Advances in Chemical Physics, Prigogine I, Rice SA (eds). Wiley, New York, p 108

    Google Scholar 

  3. Frolov MP, Podmar’kov YP (1998) Opt Commun 155:313

    Article  ADS  Google Scholar 

  4. Geng J, Lunine JI, Atkinson GH (2001) Appl Opt 40:2551

    Article  ADS  Google Scholar 

  5. Picqué N, Gueye F, Guelachvili G, Sorokin E, Sorokina I (2005) Opt Lett, in press

  6. Barrass S, Gérard Y, Holdsworth RJ, Martin PA (2004) Spectrochim Acta Part A Mol Biomol Spectrosc 60:3353

    Article  Google Scholar 

  7. Richard EC, Kelly KK, Winkler RH, Wilson R, Thompson TL, McLaughlin RJ, Schmeltekopf AL, Tuck AF (2002) Appl Phys B 75:183

    Article  ADS  Google Scholar 

  8. Durry G, Hauchecorne A, Ovarlez J, Ovarlez H, Pouchet I, Zeninari V, Parvitte B (2002) J Atmosph Chem 43:175

    Article  Google Scholar 

  9. Crosson ER, Ricci KN, Richman BA, Chilese FC, Owano TG, Provencal RA, Todd MW, Glasser J, Kachanov AA, Paldus BA, Spence TG, Zare RN (2002) Anal Chem 74:2003

    Article  PubMed  Google Scholar 

  10. Dudek JB, Tarsa PB, Velasquez A, Wladyslawski M, Rabinowitz P, Lehmann KK (2003) Anal Chem 75:4599

    Article  PubMed  Google Scholar 

  11. Webber ME, Pushkarsky M, Kumar N, Patel C (2003) Appl. Opt. 42:2119

    Article  PubMed  ADS  Google Scholar 

  12. Picqué N, Guelachvili G (1997) J Mol Spectrosc 185:244

    Article  PubMed  ADS  Google Scholar 

  13. Macko P, Romanini D, Mikhailenko SN, Naumenko OV, Kassi S, Jenouvrier A, Tyuterev VG, Campargue A (2004) J Mol Spectrosc 227:90

    Article  ADS  Google Scholar 

  14. Angert NB, Borodin NI, Garmash VM, Zhitnyuk VA, Okhrimchuk AG, Siyuchenko OG, Shestakov AV (1988) Sov J Quantum Electron 18:73

    Article  Google Scholar 

  15. Welford D, Jaspan MA (2004) J Opt Soc Am B 21:2137

    Article  ADS  Google Scholar 

  16. Gilmore DA, Vujkovic C, Atkinson GH (1993) Opt Commun 103:370

    Article  ADS  Google Scholar 

  17. Picqué N, Guelachvili G (2000) Appl Opt 39:3984

    Article  ADS  Google Scholar 

  18. Domingo C, del Olmo A, Escribano R, Bermejo D, Orza JM (1992) J Chem Phys 96:972

    Article  ADS  Google Scholar 

  19. Strong K, Johnson TJ, Harris GW (1997) Appl Opt 36:8533

    Article  ADS  Google Scholar 

  20. Depiesse C, Di Lonardo G, Fayt A, Fusina L, Hurtmans D, Robert S, Tamassia F, Vander Auwera J, Baldan A, Herman M (2005) J Mol Spectrosc 229:137

    Article  ADS  Google Scholar 

  21. Hu SM, Campargue A, Wu ZY, Ding Y, Liu AW, Zhu QS (2003) Chem Phys Lett 372:659

    Article  ADS  Google Scholar 

  22. Yang S, Metsälä M, Lantta T, Suero P, Martinez R, Vaittinen O, Halonen L (2004) Chem Phys Lett 396:213

    Article  ADS  Google Scholar 

  23. Picqué N, Guelachvili G, Kachanov AA (2003) Opt Lett 28:313

    Article  PubMed  ADS  Google Scholar 

  24. Stark A, Correia L, Teichmann M, Salewski S, Larsen C, Baev VM, Toschek PE (2003) Opt Commun 215:113

    Article  ADS  Google Scholar 

  25. Safari E (2002) Thèse de Doctorat en sciences, Université Joseph Fourier (Grenoble)

  26. Connes J, Delouis H, Connes P, Guelachvili G, Maillard JP, Michel G (1970) Nouv Rev Opt Appl 1:3

    Article  Google Scholar 

  27. Guelachvili G (1978) Appl Opt 17:1322

    ADS  Google Scholar 

  28. Guelachvili G (1981) Appl Opt 20:2121

    ADS  Google Scholar 

  29. Rothman LS, Barbe A, Benner DC, Brown LR, Camy-Peyret C, Carleer MR, Chance K, Clerbaux C, Dana V, Devi VM, Fayt A, Flaud JM, Gamache RR, Goldman A, Jacquemart D, Jucks KW, Lafferty WJ, Mandin JY, Massie ST, Nemtchinov V, Newnham DA, Perrin A, Rinsland CP, Schroeder J, Smith KM, Smith MAH, Tang K, Toth RA, Vander Auwera J, Varanasi P, Yoshino K (2003) J Quantum Spectros Radiat Transfer 82:5

    Article  ADS  Google Scholar 

  30. Toth RA (1994) Appl Opt 33:4851

    Article  ADS  Google Scholar 

  31. Maki AG, Wells JS (1991) NIST, Washington, DC, USA, Spec Publ Vol 821, pp 1–645

  32. Naumov S, Sorokin E, Sorokina IT (2004) Opt Lett 29:1276

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Picqué.

Additional information

PACS

42.62.Fi; 39.30.+w; 07.60.Ly; 33.20.Ea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueye, F., Safari, E., Chenevier, M. et al. Intracavity Cr4+:YAG laser absorption analyzed by time-resolved Fourier transform spectroscopy. Appl. Phys. B 81, 1143–1147 (2005). https://doi.org/10.1007/s00340-005-1977-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1977-0

Keywords

Navigation