Skip to main content
Log in

Nanoscale atomic waveguides with suspended carbon nanotubes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small, guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows for creation of a very regular trapping potential for the atom cloud. Adding a second nanowire allows creation of a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C (2002) Adv. At. Mol. Opt. Phys. 48:263

    Google Scholar 

  2. Reichel J (2002) Appl. Phys. B 75:469

    Article  ADS  Google Scholar 

  3. Ott H, Fortagh J, Schlotterbeck G, Grossmann A, Zimmermann C (2001) Phys. Rev. Lett. 87:230401

    Article  PubMed  ADS  Google Scholar 

  4. Hänsel W, Hommelhoff P, Hänsch TW, Reichel J (2001) Nature 413:498

    Article  PubMed  ADS  Google Scholar 

  5. Leanhardt A, Shin Y, Chikkatur AP, Kielpinski D, Ketterle W, Pritchard DE (2003) Phys. Rev. Lett. 90:100404

    Article  PubMed  ADS  Google Scholar 

  6. Schneider S, Kasper A, vom Hagen C, Bartenstein M, Engeser B, Schumm T, Bar-Joseph I, Folman R, Feenstra L, Schmiedmayer J (2003) Phys. Rev. A 67:023612

    Article  ADS  Google Scholar 

  7. Henkel C, Pötting S, Wilkens M (1999) Appl. Phys. B 69:379

    Article  ADS  Google Scholar 

  8. Lin Y-J, Teper I, Chin C, Vuletić V (2004) Phys. Rev. Lett. 92:050404

    Article  PubMed  ADS  Google Scholar 

  9. Schroll C, Belzig W, Bruder C (2003) Phys. Rev. A 68:043618

    Article  ADS  Google Scholar 

  10. Kasevich MA (2002) Science 298:136

    Article  Google Scholar 

  11. Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon Nanotubes. Springer, Berlin

    Google Scholar 

  12. Petrov DS, Gangardt DM, Shlyapnikov GV (2004) J. Phys. IV 116:5

    Google Scholar 

  13. Chen S, Egger R (2003) Phys. Rev. A 68:063605

    Article  ADS  Google Scholar 

  14. Tokatly IV (2004) Phys. Rev. Lett. 93:090405

    Article  PubMed  ADS  Google Scholar 

  15. Fuchs JN, Recati A, Zwerger W (2004) Phys. Rev. Lett. 93:090408

    Article  PubMed  ADS  Google Scholar 

  16. Mora C, Egger R, Gogolin AO, Komnik A (2004) Phys. Rev. Lett. 93:170403

    Article  PubMed  ADS  Google Scholar 

  17. Olshanii M (1998) Phys. Rev. Lett. 81:938

    Article  ADS  Google Scholar 

  18. Bergeman T, Moore MG, Olshanii M (2003) Phys. Rev. Lett. 91:163201

    Article  PubMed  ADS  Google Scholar 

  19. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403

    Article  PubMed  ADS  Google Scholar 

  20. Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov GV, Hänsch TW, Bloch I (2004) Nature 429:277

    Article  PubMed  ADS  Google Scholar 

  21. Kinoshita T, Wenger T, Weiss DS (2004) Science 305:112

    Article  Google Scholar 

  22. Görlitz A, Vogels JM, Leanhardt AE, Raman C, Gustavson TL, Abo-Shaeer JR, Chikkatur AP, Gupta S, Inouye S, Rosenband T, Ketterle W (2001) Phys. Rev. Lett. 87:130402

    Article  PubMed  Google Scholar 

  23. Sukumar CV, Brink DM (1997) Phys. Rev. A 56:2451

    Article  ADS  Google Scholar 

  24. Jones MPA, Vale CJ, Sahagun D, Hall BV, Hinds EA (2003) Phys. Rev. Lett. 91:080401

    Article  PubMed  ADS  Google Scholar 

  25. Sapmaz S, Blanter YM, Gurevich L, van der Zant HSJ (2003) Phys. Rev. B 67:235414

    Article  ADS  Google Scholar 

  26. Casimir HBG, Polder D (1948) Phys. Rev. 73:360

    Article  ADS  MATH  Google Scholar 

  27. V. Peano, M. Thorwart, C. Mora, R. Egger, unpublished results, see also cond-mat/0411517

  28. Lieb EH, Liniger W (1963) Phys. Rev. 130:1616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Dunjko V, Lorent V, Olshanii M (2001) Phys. Rev. Lett. 86:5413

    Article  PubMed  ADS  Google Scholar 

  30. Weiss U (1999) Quantum Dissipative Systems. World Scientific, Singapore

    MATH  Google Scholar 

  31. Postma HWC, Sellmeijer A, Dekker C (2000) Adv. Mater. 17:1299

    Article  Google Scholar 

  32. Kim GT, Gu G, Waizman U, Roth S (2002) Appl. Phys. Lett. 80:1815

    Article  ADS  Google Scholar 

  33. Reichel J, Thywissen JH (2004) J. Phys. IV 116:265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Peano.

Additional information

PACS

03.75.Gg; 03.75.Dg; 73.63.Fg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peano, V., Thorwart, M., Kasper, A. et al. Nanoscale atomic waveguides with suspended carbon nanotubes. Appl. Phys. B 81, 1075–1080 (2005). https://doi.org/10.1007/s00340-005-1971-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1971-6

Keywords

Navigation