Skip to main content
Log in

Optical actuation of a macroscopic mechanical oscillator

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An intensity-modulated HeNe-laser beam was utilized to optically actuate the mechanical resonance of a macroscopic torsional silicon oscillator (f0 = 67 700 Hz, Q = 42 100 at p = 1 mbar and T = 300 K). Both radiation pressure and photothermal effects may cause optical actuation of a mechanical device. Both excitation effects were studied. In actuation through radiation pressure, the actuating laser beam was focused on the high-reflectivity-coated oscillator surface. In the case where the intensity-modulated laser beam was incident on the uncoated silicon surface the photothermal effect was shown to be the dominating excitation factor. Oscillation amplitudes due to the actuation through radiation pressure and photothermal effects were Δ xrad = 1.4 pm and Δ xph = 4.3 pm with the same optical power of 1.5 mW. The measured resonance frequency and quality value were not changed when purely mechanical and radiation pressure actuation mechanisms were compared. With photothermal actuation the absorbed optical power heats the oscillator, introducing a slight decrease in the resonance frequency. Our experiments demonstrate that optical actuation combined with sensitive optical interferometric measurements can be utilized to perform dynamic vibration analysis of micromechanical components. Prospects of using micromechanical devices for observing extremely weak external forces are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Koehler, J. Opt. Soc. Am. B 14, 2197 (1997)

    Google Scholar 

  2. A. Heidmann, Y. Hadjar, M. Pinard, Appl. Phys. B 64, 173 (1997)

    Article  Google Scholar 

  3. D. Dragoman, M. Dragoman, Appl. Opt. 38, 6773 (1999)

    Google Scholar 

  4. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  Google Scholar 

  5. D.J. Wineland, W.M. Itano, Phys. Rev. A 20, 1521 (1979)

    Article  Google Scholar 

  6. C.S. Adams, E. Riis, Prog. Quantum Electron. 21, 1 (1997)

    Article  Google Scholar 

  7. A. Dorsel, J.D. McCullen, P. Meystre, E. Vignes, H. Walther, Phys. Rev. Lett. 51, 1550 (1983)

    Article  Google Scholar 

  8. P.F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 3174 (1999)

    Article  Google Scholar 

  9. D. Vitali, S. Mancini, L. Ribichini, P. Tombesi, J. Opt. Soc. Am. B 20, 1054 (2003)

    Google Scholar 

  10. T. Briant, P.F. Cohadon, M. Pinard, A. Heidmann, Eur. Phys. J. D 22, 131 (2003)

    Google Scholar 

  11. J.-M. Courty, A. Heidmann, M. Pinard, Phys. Rev. Lett. 90, 083601 (2003)

    Article  PubMed  Google Scholar 

  12. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Phys. Rev. Lett. 91, 130 401 (2003)

    Google Scholar 

  13. V. Giovannetti, S. Mancini, P. Tombesi, Europhys. Lett. 54, 559 (2001)

    Article  Google Scholar 

  14. S. Mancini, D. Vitali, V. Giovannetti, P. Tombesi, Eur. Phys. J. D 22, 417 (2003)

    Google Scholar 

  15. J. Mertz, O. Marti, J. Mlynek, Appl. Phys. Lett. 62, 2344 (1993)

    Article  Google Scholar 

  16. O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Mlynek, Ultramicroscopy 42–44, 345 (1992)

    Google Scholar 

  17. B.Q. Li, J. Lin, W. Wang, J. Micromech. Microeng. 6, 330 (1996)

    Article  Google Scholar 

  18. S. Petitgrand, B. Courbet, A. Bosseboeuf, J. Micromech. Microeng. 13, S113 (2003)

    Article  Google Scholar 

  19. J. Yang, T. Ono, M. Esashi, Appl. Phys. Lett. 77, 3860 (2000)

    Article  Google Scholar 

  20. X.T. Wu, J. Hui, M. Young, P. Kayatta, J. Wong, D. Kennith, J. Zhe, C. Warde, Appl. Phys. Lett. 84, 4418 (2004)

    Article  Google Scholar 

  21. O. Svelto, Principles of Lasers, 4th edn. (Plenum, New York, 1998)

    Google Scholar 

  22. C.M. Caves, Phys. Rev. Lett. 45, 75 (1980)

    Article  Google Scholar 

  23. C. Brif, A. Mann, J. Opt. B: Quantum Semiclass. Opt. 2, 53 (2000)

    Article  Google Scholar 

  24. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)

    Google Scholar 

  25. V.B. Braginsky, M.L. Gorodetsky, S.P. Vyatchanin, Phys. Lett. A 264, 1 (1999)

    Article  Google Scholar 

  26. K. Jacobs, I. Tittonen, H.M. Wiseman, S. Schiller, Phys. Rev. A 60, 538 (1999)

    Article  Google Scholar 

  27. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, N.F. de Rooij, Phys. Rev. A 59, 1038 (1999)

    Article  Google Scholar 

  28. M. Cerdonio, L. Conti, A. Heidmann, M. Pinard, Phys. Rev. D 63, 082003 (2001)

    Article  Google Scholar 

  29. M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, F. Marin, Phys. Rev. Lett. 89, 237 402 (2002)

    Article  Google Scholar 

  30. O. Hahtela, K. Nera, I. Tittonen, J. Opt. A: Pure Appl. Opt. 6, S115 (2004)

    Article  Google Scholar 

  31. G.E. Jellison, Jr., F.A. Modine, Appl. Phys. Lett. 41, 180 (1982)

    Article  Google Scholar 

  32. T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)

    Article  Google Scholar 

  33. R.A. Buser, N.F. de Rooij, Sens. Actuators A 21–23, 323 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hahtela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahtela, O., Tittonen, I. Optical actuation of a macroscopic mechanical oscillator. Appl. Phys. B 81, 589–596 (2005). https://doi.org/10.1007/s00340-005-1920-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1920-4

Navigation