Skip to main content
Log in

Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A three-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Taflove, S.C. Hagness, Computational Electrodynamics, 2nd edn. (Boston, Artech House 2000)

    Google Scholar 

  2. K.S. Yee, IEEE Trans. Antennas Propagat. 14, 302 (1966)

    Article  Google Scholar 

  3. D. Christensen, D. Fowers, Biosens. Bioelectron. 11, 667 (1996)

    Article  Google Scholar 

  4. D. Fowers, Masters Thesis (University of Utah, Salt Lake City, Utah, 1994)

  5. V.G. Veselago, Soviet Phys. Uspekhi. 10, 509 (1968)

    Google Scholar 

  6. R.A. Shelby, D.R. Smith, S. Schultz, Science. 292, 77 (2001)

    Article  PubMed  Google Scholar 

  7. V.A. Podolskiy, A.K. Sarychev, V.M. Shalaev, Optics Express. 11, 735 (2004)

    Google Scholar 

  8. R.W. Ziolkowski, Phys. Rev. E. 64, 056625 (2001)

    Article  Google Scholar 

  9. A. Asi, L. Shafai, Electron. Lett. 28, 1451 (1992)

    Google Scholar 

  10. A. Cangellaris, IEEE Microwave and Guided Wave Lett. 3, 3 (1993)

    Article  Google Scholar 

  11. M. Qui, Microwave and Opt. Tech. Lett. 30, 327 (2001)

    Article  Google Scholar 

  12. J.R. Krenn, Nature Mater. 2, 210 (2003)

    Article  Google Scholar 

  13. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nature Mater. 2, 229 (2003)

    Article  Google Scholar 

  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Opt. Lett. 22, 475 (1997)

    Google Scholar 

  15. P. Berini, Phys. Rev. B. 63, 125417 (2001)

    Article  Google Scholar 

  16. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussnegg, Appl. Phys. Lett. 79, 51 (2001)

    Article  Google Scholar 

  17. G. Schider, J.R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F.R. Aussenegg, W.L. Schaich, I. Puscasu, B. Monacelli, G. Boreman, Phys. Rev. B. 68, 155427 (2003)

    Article  Google Scholar 

  18. J.R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F.R. Aussenegg, Europhys. Lett. 663, 663 (2002)

    Article  Google Scholar 

  19. C.A. Pfeiffer, E.N. Economou, K.L. Ngai, Phys. Rev. B 10, 3038 (1974)

    Article  Google Scholar 

  20. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard, Phys. Rev. Lett. 82, 2590 (1999)

    Article  Google Scholar 

  21. S.A. Maier, M.L. Brongersma, H.A. Atwater, Appl. Phys. Lett. 78, 16 (2001)

    Article  Google Scholar 

  22. K. Tananka, M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003)

    Article  Google Scholar 

  23. K. Tananka, M. Tanaka, T. Sugiyama, Optics Express. 13, 256 (2005)

    Article  Google Scholar 

  24. B. Wang, G.P. Wang, Appl. Phys. Lett. 85, 3599 (2004)

    Article  Google Scholar 

  25. B. Wang, G.P. Wang, Opt. Lett. 29, 1992 (2004)

    Article  PubMed  Google Scholar 

  26. I.V. Novikov, A.A. Maradudin, Phys. Rev. B. 66, 035403 (2002)

    Article  Google Scholar 

  27. D.F.P. Pile, D.K. Gramotnev, Opt. Lett. 29, 1069 (2004)

    Article  PubMed  Google Scholar 

  28. D.K. Gramotnev, D.F.P. Pile, Appl. Phys. Lett. 85, 6323 (2004)

    Article  Google Scholar 

  29. D.F.P. Pile, D.K. Gramotnev, Opt. Lett. 30, 1186, (2005)

    Article  PubMed  Google Scholar 

  30. D.F.P. Pile, D.K. Gramotnev, Appl. Phys. Lett. 86, 161101 (2005)

    Article  Google Scholar 

  31. S. Foteinopoulou, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003)

    Article  PubMed  Google Scholar 

  32. M. Celuch-Marcysiak, W.K. Gwarek, IEEE Trans. Microwave Theory Tech. 43, 860 (1995)

    Article  Google Scholar 

  33. G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. P. Pile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pile, D.F.P. Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index. Appl. Phys. B 81, 607–613 (2005). https://doi.org/10.1007/s00340-005-1916-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1916-0

PACS

Navigation