Skip to main content
Log in

Theoretical investigation of chirped mirrors in semiconductor lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2005

Abstract

This paper reports a theoretical design of chirped mirrors in 1.3-μm double-section semiconductor lasers to achieve high reflectivity and dispersion compensation over a broad bandwidth. Analytic expressions for reflectivity, group delay and group delay dispersion are derived. We use for the first time chirped air/semiconductor layer pairs as mirrors for higher-order dispersion compensation in semiconductor lasers. Our optimised calculations demonstrate that the broad-band mirrors designed consist of a total of only 12 air/semiconductor layers and achieve a reflectivity higher than 99.8%, a smooth group delay and almost stable dispersion in the laser cavity over a 100-nm bandwidth. Due to a high index contrast of both types of the layers, n l = 1, n h~ 3.5, a high-reflectivity bandwidth of > 700 nm is obtained in 1.3-μm semiconductor lasers. We also compare our results with that of a commercial simulation program and show a good agreement between them. As a conclusion, we assume from the theoretical results that air/semiconductor layer pairs with varying thicknesses used at one end of double-section semiconductor lasers can lead to femtosecond optical pulse generation using mode-locking techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vasilev, Ultrafast Diode Lasers, Fundamentals and Applications (Artech House, Boston, London, Norwood, MA, 1995)

    Google Scholar 

  2. J. Singh, Semiconductor Optoelectronics: Physics and Technology (McGraw-Hill, New York, 1995)

    Google Scholar 

  3. D.H. Sutter, L. Gallmann, N. Matuschek, F. Morier-Genoud, V. Scheuer, G. Angelow, T. Tschudi, G. Steinmeyer, U. Keller, Appl. Phys. B: Lasers Opt. 70(Suppl.), S5 (2000)

    Google Scholar 

  4. N. Kazunori, Appl. Phys. Lett. 64, 261 (1994)

    Article  Google Scholar 

  5. J. Kuhl, M. Serenyi, E.O. Göbel, Opt. Lett. 12, 334 (1987)

    Google Scholar 

  6. R. Paschotta, G.J. Spühler, D.H. Sutter, N. Matuschek, U. Keller, M. Moser, R. Hövel, V. Scheuer, G. Angelow, T. Tschudi, Appl. Phys. Lett. 75, 2166 (1999)

    Article  Google Scholar 

  7. K. Sato, A. Hirano, H. Ishii, IEEE J. Sel. Top. Quantum Electron. 5, 590 (1999)

    Article  Google Scholar 

  8. R. Szipöcs, K. Ferencs, C. Spielman, F. Krausz, Opt. Lett. 19, 201 (1994)

    Google Scholar 

  9. Z. Xinping, Ph.D. dissertation, University of Marburg (2002)

  10. F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, Opt. Lett. 22, 831 (1997)

    Google Scholar 

  11. N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998)

    Article  Google Scholar 

  12. D.H. Sutter, I.D. Jung, F.X. Kartner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 169 (1998)

    Article  Google Scholar 

  13. G.P. Agrawal, Semiconductor Lasers: Past, Present and Future (American Institute of Physics, New York, 1995)

    Google Scholar 

  14. G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  15. N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Quantum Electron. 33, 295 (1997)

    Article  Google Scholar 

  16. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  17. M. Gerken, D.A.B. Miller, Appl. Opt. 42, 1330 (2003)

    PubMed  Google Scholar 

  18. N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Quantum Electron. 35, 129 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cakmak.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00340-005-1932-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakmak, B., Karacali, T. & Yu, S. Theoretical investigation of chirped mirrors in semiconductor lasers. Appl. Phys. B 81, 33–37 (2005). https://doi.org/10.1007/s00340-005-1868-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1868-4

PACS

Navigation