Skip to main content
Log in

Nonlinear Bragg structures based on ZnS/ZnSe superlattices

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Nonlinear optical response of periodic ZnSe/ZnS heterostructures is reported using interband excitation of a ZnSe sublattice by nano-, pico- and femtosecond laser pulses. A considerable shift of the reflection spectrum and large relative reflection changes were observed in a wide spectral range corresponding to the transparency region of ZnSe far from the intrinsic absorption onset. Evaluated refraction-index change is about −0.05 with the relaxation time being about 3 ps. In the case of femtosecond excitation, a wide-band nonlinear response is observed for both one-photon near-UV and two-photon near-IR excitation. The nonlinear refraction is supposed to be controlled by population-induced absorption changes in ZnSe single crystals and relevant refraction-index modification via Kramers–Kronig relations. The nonlinearity relaxation time is supposed to trace a transition from a non-equilibrium to a quasi-equilibrium distribution of electrons and holes within ZnSe conduction and valence bands, respectively, rather than the electron–hole recombination time. The nonlinearity mechanism does not reduce to just population-dependent absorption saturation, but essentially results from the specific distribution function in the first instance after excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, 1995)

  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)

    Google Scholar 

  3. A.M. Zheltikov, Optics of Microstructured Fibers (Nauka, Moscow, 2004) (in Russsian)

    Google Scholar 

  4. C.M. Soukoulis (ed.), Photonic Band Gap Materials (Kluwer, Dordrecht, 1996)

    Google Scholar 

  5. Photonic Crystals: Advances in Design, Fabrication, and Characterization, Eds. K. Bush, S. Loelkes, R.B. Wehrspohn (Wiley-VCH Verlag, 2004), p. 175

  6. Th.F. Krauss, R.M. De La Rue, Prog. Quantum Electron. 23, 51 (1999)

    Article  Google Scholar 

  7. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, J. Photochem. Photobiol. C: Photochem. Rev. 2, 35 (2001)

    Article  Google Scholar 

  8. E. Yablonovich (ed.), Special issue on photonic crystals. IEEE J. Lightwave Technol. 17, N11 (2000)

  9. A. Bjarklev, A. Lavrinenko (eds.), Special issue on photonic bandgaps. J. Opt. A: Pure Appl. Opt. 3, 6 (2001)

    Google Scholar 

  10. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, Science 282, 1679 (1998)

    Article  PubMed  Google Scholar 

  11. D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, Appl. Phys. A 68, 25 (1999)

    Article  Google Scholar 

  12. P.St.J. Russell, S. Tredwell, P.J. Roberts, Opt. Commun. 160, 66 (1999)

    Article  Google Scholar 

  13. W. Gellerman, M. Kohmoto, B. Sutherland, P.C. Taylor, Phys. Rev. Lett. 72, 633 (1994)

    Article  PubMed  Google Scholar 

  14. C. Sibilia, I.S. Nefedov, M. Scalora, M. Bertolotti, J. Opt. Soc. Am. B 15, 1947 (1998)

    Google Scholar 

  15. E. Macia, Appl. Phys. Lett. 73, 3330 (1998)

    Article  Google Scholar 

  16. D. Lusk, I. Abdulhalim, F. Placido, Opt. Commun. 198, 273 (2001)

    Article  Google Scholar 

  17. A.V. Lavrinenko, S.V. Zhukovsky, K.S. Sandomirskii, S.V. Gaponenko, Phys. Rev. E 65, 036621 (2002)

    Article  Google Scholar 

  18. S.V. Zhukovsky, A.V. Lavrinenko, S.V. Gaponenko, Europhys. Lett. 66, 455 (2004)

    Article  Google Scholar 

  19. N.-H. Liu, Phys. Rev. B 55, 3543 (1997)

    Article  Google Scholar 

  20. M.S. Vasconcelos, E.L. Albuquerque, Phys. Rev. B 57, 2826 (1998)

    Article  Google Scholar 

  21. R. Shimada, T. Koda, T. Ueta, K. Ohtaka, J. Appl. Phys. 91, 3905 (2001)

    Article  Google Scholar 

  22. S.V. Gaponenko, S.V. Zhukovsky, A.V. Lavrinenko, K.S. Sandomirskii, Opt. Commun. 205, 49 (2002)

    Article  Google Scholar 

  23. L. Brzozowski, V. Sukhovatkin, E.H. Sargent, A.J. SpringThorpe, M. Extavour, IEEE J. Quantum Electron. 39, 924 (2003)

    Article  Google Scholar 

  24. D.A. Mazurenko, R. Kerst, J.I. Dijkhuis, A.V. Akimov, V.G. Golubev, D.A. Kurdyukov, A.B. Pevtsov, A.V. Sel’kin, Phys. Rev. Lett. 91, 213 903 (2003)

    Article  Google Scholar 

  25. N.C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Forstner, A. Knorr, S.W. Koch, G. Khitrova, H.M. Gibbs, H. Giessen, Phys. Rev. B 70, 075306 (2004)

    Article  Google Scholar 

  26. I.D. Jung, F.X. Kartner, N. Matuschek, D.H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, U. Keller, Appl. Phys. B 65, 137 (1997)

    Article  Google Scholar 

  27. P.I. Kuznetsov, V.A. Jytov, L.Yu. Zakharov, B.S. Shchamkhalova, Yu.V. Korostelin, V.I. Kozlovsky, Phys. Status Solidi B 229, 171 (2002)

    Article  Google Scholar 

  28. V.I. Kovalev, P.I. Kuznetsov, V.A. Zhitov, L.Yu. Zakharov, A.I. Rukovishnikov, A.V. Khomich, G.G. Yakushcheva, S.V. Gaponenko, J. Appl. Spectrosc. 69, 298 (2002)

    Article  Google Scholar 

  29. N. Peyghambarian, S.H. Park, S.W. Koch, A. Jeffery, J.E. Potts, H. Cheng, Appl. Phys. Lett. 52, 182 (1988)

    Article  Google Scholar 

  30. S.V. Gaponenko, I.E. Malinovsky, L.T. Perelman, L.G. Zimin, J. Luminesc. 52, 225 (1992)

    Article  Google Scholar 

  31. C. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995)

    Google Scholar 

  32. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993)

    Google Scholar 

  33. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996)

    Google Scholar 

  34. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)

    Article  Google Scholar 

  35. J. Gutowski, U. Neukirch, P. Michler, B. Haase, K. Wundtke, J. Cryst. Growth 184–185, 662 (1998)

    Google Scholar 

  36. K. Leonardi, H. Heinke, K. Ohkawa, D. Hommel, H. Selke, F. Gindele, U. Woggon, Appl. Phys. Lett. 71, 1510 (1997)

    Article  Google Scholar 

  37. C.H. Lee, P.S. Mak, A.P. DeFonzo, IEEE J. Quantum Electron. 16, 277 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gaponenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankevich, V.V., Ermolenko, M.V., Buganov, O.V. et al. Nonlinear Bragg structures based on ZnS/ZnSe superlattices. Appl. Phys. B 81, 257–263 (2005). https://doi.org/10.1007/s00340-005-1859-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1859-5

PACS

Navigation