Skip to main content
Log in

Measurement of the frequency modulation transfer function of a laser using a Mach–Zehnder interferometer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A technique is presented for determining the frequency modulation transfer function of a laser. The method is based on a Mach–Zehnder interferometer, with a significant difference in the optical path lengths of the two arms. A frequency-modulated laser beam incident on the interferometer produces a phase-modulated photocurrent signal with an effective modulation index that is related to the amplitude of the optical frequency modulation. Techniques for determining both the amplitude and the phase of the optical frequency modulation from the photocurrent signal are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kuznetsov, J. Stone, L.W. Stulz, Appl. Phys. Lett. 59, 2492 (1991)

    Article  CAS  Google Scholar 

  2. Y.C. Chung, T.M. Shay, Appl. Opt. 28, 648 (1989)

    CAS  Google Scholar 

  3. H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-18, 2069 (1982)

    Article  Google Scholar 

  4. P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P.I. Kuindersma, C.W. Fredriksz, IEEE J. Quantum Electron. 25, 2239 (1989)

    Article  CAS  Google Scholar 

  5. M. Imai, K. Kawakita, Appl. Opt. 29, 348 (1990)

    CAS  Google Scholar 

  6. H. Tsuchida, T. Tako, M. Ohtsu, Jpn. J. Appl. Phys. 22, L19 (1983)

    Google Scholar 

  7. T. Chattopadhyay, M. Bhattacharya, Opt. Commun. 110, 46 (1994)

    Article  Google Scholar 

  8. H. Nakajima, Electron. Lett. 26, 1129 (1990)

    Google Scholar 

  9. T. Chattopadhyay, M. Bhattacharya, Opt. Commun. 163, 193 (1999)

    Article  CAS  Google Scholar 

  10. P. Correc, O. Girard, I.F. de Faria, Jr., IEEE J. Quantum Electron. 30, 2485 (1994)

    Article  CAS  Google Scholar 

  11. P. Landais, G.-H. Duan, S. Keller, J. Jacquet, IEEE J. Quantum Electron. 31, 1029 (1995)

    Article  CAS  Google Scholar 

  12. G.M. Carter, K.-Y. Huang, J. Brotman, R. Grober, H. Mandelberg, IEEE J. Quantum Electron. 29, 2910 (1993)

    Article  CAS  Google Scholar 

  13. W.V. Sorin, K.W. Chang, G.A. Conrad, P.R. Hernday, J. Lightwave Technol. 10, 787 (1992)

    Article  Google Scholar 

  14. X. Xie, J. Khurgin, J. Kang, F.-S. Choa, IEEE Photon. Technol. Lett. 14, 1136 (2002)

    Article  Google Scholar 

  15. F.G. Stremler, Introduction to Communication Systems (Addison-Wesley, Reading, MA, 1990)

    Google Scholar 

  16. W.Y. Pan, S.J. Jang, Rev. Sci. Instrum. 61, 2109 (1990)

    Article  CAS  Google Scholar 

  17. R.W. Fox, C.W. Oates, L.W. Hollberg, in Cavity-Enhanced Spectroscopies (Academic, San Diego, 2002), pp. 1–46

    Google Scholar 

  18. J.T. Broch, Principles of Experimental Frequency Analysis (Elsevier Applied Science, London, New York, 1990)

    Google Scholar 

  19. P.A. Lynn, An Introduction to the Analysis and Processing of Signals (Macmillan, London, 1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Manson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McRae, T.G., Field, B.J. & Manson, P.J. Measurement of the frequency modulation transfer function of a laser using a Mach–Zehnder interferometer. Appl. Phys. B 80, 849–856 (2005). https://doi.org/10.1007/s00340-005-1807-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1807-4

PACS

Navigation