Skip to main content
Log in

3D Modeling of amplification processes in CPA laser amplifiers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present here chirped pulse amplification simulations allowing for the extension of the generally used 1D model. The importance of the beam spatial profiles, diffraction and thermal effects in simulations is clearly shown in order to describe with accuracy the gain saturation. Experimental measurements performed on a 100 TW laser validate this calculation. The effects of dispersion and self-focusing are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  Google Scholar 

  2. M. Pittman, S. Ferré, J.-P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, Appl. Phys. B 74, 529 (2002)

    Article  Google Scholar 

  3. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyiama, Opt. Lett. 28(17), 1594 (2003)

    PubMed  Google Scholar 

  4. L.M. Frantz, J.S. Nodvik, J. Appl. Phys. 34, 2346 (1963)

    Article  Google Scholar 

  5. R. Bellman, G. Birnbaum, W.G. Wagner, J. Appl. Phys. 34, 780 (1963)

    Article  Google Scholar 

  6. C. Le Blanc, P. Curley, F. Salin, Opt. Commun. 131, 391 (1996)

    Article  Google Scholar 

  7. Y.H. Cha, Y.I. Kang, C.H. Nam, J. Opt. Soc. Am. B 16, 1220 (1999)

    Google Scholar 

  8. W.H. Lowdermilk, J.E. Murray, J. Appl. Phys. 51, 2436 (1980)

    Article  Google Scholar 

  9. P.F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986)

    Google Scholar 

  10. G.F. Albrecht, J.M. Eggleston, J.J. Ewing, Opt. Commun. 52, 401 (1985)

    Article  Google Scholar 

  11. Technical details can be found on : www.oxalis-laser.com

  12. O. Morice, Opt. Eng. 42, 1530–1541 (2003)

    Article  Google Scholar 

  13. G.L.J. Lamb, Rev. Mod. Phys. 43(2), 99 (1971). For propagation equation, see Eq. (2.1). For macroscopic polarization and population difference, see appendix A

    Article  Google Scholar 

  14. A.E. Siegman “LASERS”. For nonlinear Schrödinger equation, see Chap. 10 (1986)

  15. A. Icsevgi, W.E. Lamb, Phys. Rev. 185(2), 517 (1969)

    Article  Google Scholar 

  16. N.G. Basov, R.V. Ambartsumyan, V.S. Zuev, P.G. Kryukov, V.S. Letokhov, Sov. Phys.—JETP 23(1), 16 (1966)

    Google Scholar 

  17. J.M. Eggleston, L.G. DeShazer, K.W. Kangas, IEEE J. Quantum Electron. 24, 1009 (1988)

    Article  Google Scholar 

  18. C.E. Byvik, A.M. Buoncristiani, IEEE J. Quantum Electron. 21, 1619–1624 (1985)

    Article  Google Scholar 

  19. W. Koechner, Heat removal, Solid-State Laser Engineering (Springer, Berlin, 1999), Chap. 7

    Google Scholar 

  20. P. Georges, F. Estable, F. Salin, J.P. Poizat, P. Grangier, A. Brun, Opt. Lett. 16, 144–146 (1991)

    Google Scholar 

  21. S. Smolorz, F. Wise, Opt. Lett. 23, 1381–1383 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Planchon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planchon, T.A., Burgy, F., Rousseau, JP. et al. 3D Modeling of amplification processes in CPA laser amplifiers. Appl. Phys. B 80, 661–667 (2005). https://doi.org/10.1007/s00340-005-1787-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1787-4

PACS

Navigation