Skip to main content
Log in

Development of a SNR parameterization scheme for general lidar assessment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a general methodology for evaluating the capabilities of a general lidar system encompassing both backscatter (elastic and Raman lidar) and topographic targets. By introducing a well-defined atmospheric reference medium and by individually examining and decomposing the contributions of lidar system parameters including lidar transmitter power, field of view, receiver noise, atmospheric conditions, and sky background on the signal-to-noise ratio, we obtain a simple dimensionless parameterization of the lidar system. Using this parameterization, numerical simulations are carried out to determine achievable lidar performance including operation range, minimum detectable gas concentration, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Grant, E. Browell, R. Menzies, K. Sassen, C.-Y. She, B. Thompson (eds.), Selected Papers on Laser Applications in Remote Sensing. SPIE Milestone Series, vol. MS 141 (SPIE, Bellingham, 1997), pp. 13–34, 142–177, 246–332, 511–526

  2. G. Kamerman, B. Thompson (eds.), Selected Papers on Laser Radar. SPIE Milestone Series, vol. MS 133 (SPIE, Bellingham, 1997), pp. 525–708

    Google Scholar 

  3. V. Zuev, M. Kataev, M. Makogon, A. Mitsel, Atmos. Ocean. Opt. 8(8), 1136 (1995)

    Google Scholar 

  4. U. Singh, T. Itabe, Z. Liu (eds.), Lidar remote sensing for industry and environment monitoring. Proc. SPIE 4893, 1–24, 121–159 (2003)

  5. M. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994)

    Google Scholar 

  6. J. Bosenberg, D. Brassington, P. Simon (eds.), Instrument Development for Atmospheric Research and Monitoring: Lidar Profiling, DOAS and TDLS (Springer, Berlin, 1997)

    Google Scholar 

  7. V.A. Kovalev, W.E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, New York, 2004)

    Google Scholar 

  8. D.K. Killinger, Lidar and Laser Remote Sensing: Handbook of Vibrational Spectroscopy (Wiley, New York, 2002)

    Google Scholar 

  9. K. Schaefer, O. Lado-Bordowsky, A. Comeron, R. Picard (eds.), Remote sensing of clouds and the atmosphere. Proc. SPIE 4882, 400–450 (2003)

  10. G.R. Osche, Optical Detection Theory for Laser Applications (Wiley, New York, 2002)

    Google Scholar 

  11. R.M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1994)

    Google Scholar 

  12. R.R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie, Moscow, 1994) [in Russian]

  13. R.R. Agishev, A. Comeron, Appl. Opt. 41(36), 7516 (2002)

    PubMed  Google Scholar 

  14. R.R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, A. Gilerson, V.A. Vlasov, Appl. Phys. B 79(2), 255 (2004)

    Article  Google Scholar 

  15. A. Utkin, A. Lavrov, L. Costa, F. Simoes, R. Vilar, Appl. Phys. B 74, 77 (2002)

    Article  Google Scholar 

  16. J.R. Campbell, E.J. Welton, J.D. Spinhirne, Q. Ji, S.-C. Tsay, S. Piketh, M. Barenbrug, B. Holben, J. Geophys. Res. 108, 847 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Agishev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agishev, R., Gross, B., Moshary, F. et al. Development of a SNR parameterization scheme for general lidar assessment. Appl. Phys. B 80, 765–776 (2005). https://doi.org/10.1007/s00340-005-1783-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1783-8

PACS

Navigation