Skip to main content
Log in

Oxygen quenching of toluene fluorescence at elevated temperatures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Gas-phase oxygen quenching of toluene laser-induced fluorescence (LIF) is studied between 300 and 650 K in a nitrogen/oxygen bath gas of 1-bar total pressure with oxygen partial pressures up to 400 mbar. With increasing vibrational excitation of the laser-excited toluene, intramolecular decay becomes faster, resulting in a decreasing relative strength of collisional quenching by oxygen. Additionally, Stern–Volmer plots are found to be non-linear for temperatures above 500 K in the case of 266-nm excitation and at all temperatures for 248-nm excitation. This is attributed to the onset of internal conversion from specific vibrational levels. A photophysical model is developed that describes the experimental data and predicts toluene LIF signal strengths for higher oxygen partial pressures. One important result for practical application is that oxygen quenching is not the dominant de-excitation process for engine-related temperature and pressure conditions, and thus application of the popular fuel–air ratio LIF (FARLIF) concept leads to erroneous signal interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Brown, D. Phillips, Trans. Faraday Soc. II 70, 630 (1974)

    Article  Google Scholar 

  2. C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)

    Article  Google Scholar 

  3. J. Reboux, D. Puechberty, SAE Tech. Pap. Ser. No. 941 988 (1994)

  4. C. Schulz, V. Sick, Prog. Energy Combust Sci. 31, 75 (2005)

    Article  Google Scholar 

  5. D. Frieden, V. Sick, SAE Technical Paper Series 2003-01-1114 (2003)

  6. J.C. Sacadura, L. Robin, F. Dionnet, D. Gervais, P. Gastaldi, A. Ahmed, SAE Tech. Pap. Ser. No. 2000-01-1794 (2000)

  7. H. Zhao, N. Ladommatos, Engine Combustion Instrumentation and Diagnostics (Society of Automotive Engineers, Warrendale, PA, 2001)

  8. A.P. Fröba, F. Rabenstein, K.U. Münch, A. Leipertz, Combust. Flame 112, 199 (1998)

    Article  Google Scholar 

  9. J. Kazenwadel, W. Koban, T. Kunzelmann, C. Schulz, Chem. Phys. Lett. 345, 259 (2001)

    Article  Google Scholar 

  10. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  11. M. Jacon, C. Lardeux, R. Lopezdelgado, A. Tramer, Chem. Phys. 24, 145 (1977)

    Article  Google Scholar 

  12. C.S. Parmenter, M.W. Schuyler, Proc. Soc. Chim. Phys. 20, 92 (1969)

    Google Scholar 

  13. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proceedings of the Combustion Institute 30, 1545 (2005)

    Article  Google Scholar 

  14. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 147 (2004)

    Article  Google Scholar 

  15. K. Kikuchi, C. Sato, M. Watabe, H. Ikeda, Y. Takahashi, T. Miyashi, J. Am. Chem. Soc. 115, 5180 (1993)

    Article  Google Scholar 

  16. S.F. Fischer, A.L. Stanford, E.C. Lim, J. Chem. Phys. 61, 582 (1974)

    Article  Google Scholar 

  17. C.S. Huang, J.C. Hsieh, E.C. Lim, Chem. Phys. Lett. 37, 349 (1976)

    Article  Google Scholar 

  18. K.G. Spears, S.A. Rice, J. Chem. Phys. 55, 5561 (1971)

    Article  Google Scholar 

  19. P. Farmanara, V. Stert, W. Radloff, I.V. Hertel, J. Phys. Chem. A 105, 5613 (2001)

    Article  Google Scholar 

  20. H. Gattermann, M. Stockburger, J. Chem. Phys. 63, 4541 (1975)

    Google Scholar 

  21. R.E. Smalley, Annu. Rev. Phys. Chem. 34, 129 (1983)

    Google Scholar 

  22. E. Riedle, H.J. Neusser, E.W. Schlag, J. Chem. Phys. 75, 4231 (1981)

    Article  Google Scholar 

  23. D.R. Borst, D.W. Pratt, J. Chem. Phys. 113, 3658 (2000)

    Article  Google Scholar 

  24. W. Koban, C. Schulz, Appl. Phys. B, in preparation (2005)

  25. W. Koban, C. Schulz, SAE Technical Paper Series 2005-01-2091 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Koban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koban, W., Koch, J.D., Hanson, R.K. et al. Oxygen quenching of toluene fluorescence at elevated temperatures. Appl. Phys. B 80, 777–784 (2005). https://doi.org/10.1007/s00340-005-1769-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1769-6

PACS

Navigation