Skip to main content
Log in

Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Resonant piezoelectric photoacoustic detection is demonstrated to be a sensitive tool for the determination of phase transitions. A model is presented that describes the changes in the signal expected during phase transitions when resonant detection is used. The technique is applied to the study of first-order martensitic diffusionless transformations in copper-based shape-memory alloys. The model takes into account the signal changes arising from two sources. One behaves like an effective change in the heat capacity, and arises due to the enthalpy of the reaction, and the other can be described as an effective change in the thermal expansion coefficient, and arises from the volume change during the transformation. Due to the relative high frequency used (around 20 kHz), the transformation lags behind the temperature oscillations, yielding a phase shift in the acoustic signal as the transformation temperature is passed. The relative sign of the phase angle and amplitude as the transformation proceeds is an indication as to whether the signal arises from volume changes or heat exchange (enthalpy). Huge signals from very small volume changes (smaller than 0.5%) were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  Google Scholar 

  2. H. Vargas, L.C.M. Miranda, Phys. Rep. (Rev. Sect. Phys. Lett.) 161, 43 (1988)

    Google Scholar 

  3. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)

    Google Scholar 

  4. C. Pichon, M. Le Liboux, D. Fournier, A.C. Boccara, Appl. Phys. Lett. 35, 435 (1979)

    Google Scholar 

  5. J. Fernandez, J. Etxebarria, M.J. Tello, A.L. Acharri, J. Phys. D: Appl. Phys. 16, 269 (1983)

    Google Scholar 

  6. N.A. George, C.P.G. Vallabhan, V.P.N. Nampoori, A.K. George, P. Radhakrishnan, J. Phys. D: Appl. Phys. 33, 3228 (2000)

    Google Scholar 

  7. T. Somasundaram, P. Ganguly, C.N.R. Raoe, J. Phys. C: Solid State Phys. 19, 2137 (1986)

    Google Scholar 

  8. M.A. Siqueira, C.C. Ghizoni, J.I. Vargas, E.A. Menezes, H. Vargas, L.C.M. Miranda, J. Appl. Phys. 51, 1403 (1980)

    Google Scholar 

  9. Ts. Vassilev, Ts. Velinov, I. Avramov, S. Surnev, Appl. Phys. A 61, 129 (1995)

    Google Scholar 

  10. J.O. Tocho, R. Ramlrez, J.A. Gonzalo, Appl. Phys. Lett. 59, 1684 (1991)

    Google Scholar 

  11. D.J. Orzi, G.M. Bilmes, J.O. Tocho, N. Mingolo, O.E. Mart$nez, Appl. Phys. B 66, 245 (1998)

    Google Scholar 

  12. J.L. Pineda Flores, R. Casta$neda-Guzm$an, M. Villagr$an-Mu$niz, A. Huanosta-Tera, Appl. Phys. Lett. 79, 1166 (2001)

    Google Scholar 

  13. R. Casta$neda-Guzm$an, M. Villagr$aAn-Mu$niz, J.M. Saniger Blesa, O. P$erez-Mart$inez, Appl. Phys. Lett. 73, 623 (1998)

    Google Scholar 

  14. Y. Cesa, N. Mingolo, J.M. Cordero Larriera, O.E. Mart$inez, Surf. Coat. Technol. 122, 28 (1999)

    Google Scholar 

  15. Y. Cesa, N. Mingolo, O.E. Mart$inez, Surf. Eng. 18, 64 (2002)

    Google Scholar 

  16. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)

    Article  Google Scholar 

  17. P. Korpiun, R. Tilgner, J. Appl. Phys. 51, 6115 (1980)

    Google Scholar 

  18. W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)

    Article  Google Scholar 

  19. J.L. Pellegrina, R. Romero, Mater. Sci. Eng. A 282, 16 (2000)

    Google Scholar 

  20. R. Romero, J.L. Pellegrina, Phys. Rev. B 50, 9046 (1994)

    Google Scholar 

  21. A. Caneiro, M. Chandrasekaran, Scr. Metall. 22, 1797 (1988)

    Google Scholar 

  22. H. Xu, S. Tan, Scr. Metall. Mater. 33, 749 (1995)

    Google Scholar 

  23. A. Cuniberti, R. Romero, Mater. Sci. Eng. A 349, 230 (2003)

    Google Scholar 

  24. A. Planes, J.L. Macqueron, M. Morin, G. Guenin, Phys. Status Solidi A 66, 717 (1981)

    Google Scholar 

  25. S.M. Landi, A.V. Bragas, J.A. Coy, O.E. Mart$inez, J. Ultramicrosc. 77, 207 (1999)

    Google Scholar 

  26. S.M. Landi, O.E. Mart$inez, J. Appl. Phys. 88, 4840 (2000)

    Google Scholar 

  27. R. Tsumura, D. R$ios-Jara, M. Ch$aAvez, L. Rodr$iguez, T. Akachi, R. Escudero, Phys. Status Solidi A 105, 411 (1988)

    Google Scholar 

  28. Y. Cesa, PhD Thesis, University of Buenos Aires, FI-UBA, 2004.

  29. L. Landau, E. Lifchitz, Th$eorie de L$elasticit$e (Mir, Moscow 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. MINGOLO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MARTÍNEZ, O.E., CESA, Y., MINGOLO, N. et al. Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes. Appl. Phys. B 80, 365–371 (2005). https://doi.org/10.1007/s00340-005-1741-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1741-5

PACS

Navigation