Skip to main content
Log in

Modelling of the solid–liquid interface during laser processing using an inverse methodology

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This study presents a methodology for estimating the melt depth during laser processing of solid materials. The determination of the melt depth is treated as an inverse heat conduction problem, which includes the solid and liquid phases. The conjugate gradient method is applied to treat the inverse problem using the available temperature measurements. Without the inverse methodology the melt depth is very difficult to obtain with precision. The proposed method can also be applied during microthermal machining to determine the location of the solid–liquid interface and the temperature distributions of the two phases by using scanning thermal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. McGeough, Micromachining of Engineering Materials (Marcel-Dekker, New York 2002)

    Google Scholar 

  2. W.M. Sten, J. Opt. A: Pure Appl. Opt. 5, 3 (2002)

    Google Scholar 

  3. R. Griffith, B. Nassersharif, Numer. Heat Transfer B 18, 169 (1990)

    Google Scholar 

  4. H.S. Lee, H. Merte Jr., Int. J. Heat Mass Transfer 39, 2427 (1996)

    Google Scholar 

  5. D.M. Christopher, Numer. Heat Transfer B 39, 189 (2001)

    Google Scholar 

  6. J. Xie, A. Kar, J. Appl. Phys. 81, 3015 (1997)

    Google Scholar 

  7. Z.H. Shen, S.Y. Zhang, J. Lu, X.W. Ni, Opt. Laser Technol. 33, 533 (2001)

    Google Scholar 

  8. J.V. Beck, B. Blackwell, C.R. St. Clair Jr., Inverse Heat Conduction: Ill-Posed Problems (Wiley-Interscience, New York 1985)

    Google Scholar 

  9. O.M. Alifanov, Inverse Heat Transfer Problem (Springer, Berlin, Heidelberg, New York 1994)

    Google Scholar 

  10. B. Sawaf, M.N. $Ozisik, Y. Jarny, Int. J. Heat Mass Transfer 38, 3005 (1995)

    Google Scholar 

  11. A.J. Silva Neto, M.N. $Ozisik, J. Appl. Phys. 71, 5357 (1992)

    Google Scholar 

  12. W.J. Chang, C.I. Weng, Int. J. Heat Mass Transfer 42, 2661 (1999)

    Google Scholar 

  13. W.J. Chang, T.H. Fang, C.I. Weng, Nanotechnology 15, 427 (2004)

    Google Scholar 

  14. Y.C. Yang, S.S. Chu, W.J. Chang, J. Appl. Phys. 95, 159 (2004)

    Google Scholar 

  15. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London 1959)

    Google Scholar 

  16. A. Hammiche, L. Bozec, M. Conror et al., J. Vac. Sci. Technol. B 18, 1322 (2000)

    Google Scholar 

  17. H.M. Pollock, A. Hammiche, J. Phys. D: Appl. Phys. 34, R23 (2001)

    Google Scholar 

  18. T.H. Fang, W.J. Chang, Appl. Surf. Sci., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-J. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WJ., Fang, TH. Modelling of the solid–liquid interface during laser processing using an inverse methodology. Appl. Phys. B 80, 373–376 (2005). https://doi.org/10.1007/s00340-005-1740-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1740-6

PACS

Navigation