Skip to main content
Log in

Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Femtosecond lasers have been successfully used to perform refractive surgery, by cutting within the bulk of the corneal tissue. As a side effect to the laser cutting there, a streak-like discoloration is observed in histological sections above and below the cutting plane, incident with the direction of laser propagation. These streak-shaped alterations of tissue are believed to originate from low free-electron densities not sufficient to cause optical breakdown. To understand the generation of the streaks, the nonlinear interaction of ultra-short laser pulses with water, as an approximation to corneal tissue, is simulated numerically using a model that simultaneously describes both the nonlinear pulse propagation and the generation of free electrons. The model is used to calculate spatial free electron density distributions generated by ultra-short pulses. Areas of high free-electron density correspond to optical breakdown, whereas areas of low density can be related to streaks. The numerical code can be adapted to practically any transparent dielectric Kerr medium, whose nonlinear optical parameters are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Schaffer, A. Brodeur, J.F. Garìa, E. Mazur: Opt. Lett. 26, 93 (2001)

    Article  ADS  Google Scholar 

  2. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, W. Ertmer: Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33 (2000)

    Article  Google Scholar 

  3. A. Heisterkamp, T. Mamom, O. Kermani, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski: Graefe’s Arch. Clin. Exp. Ophthalmol. 241, 511 (2003)

    Article  Google Scholar 

  4. K. König, I. Riemann, W. Fritzsche: Opt. Lett. 26, 819 (2001)

    Article  ADS  Google Scholar 

  5. L.T. Nordan, S.G. Slade, R.N. Baker, C. Suarez, T. Juhasz, R. Kurtz: J. Refract. Surg. 19, 8 (2003)

    Google Scholar 

  6. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur: Opt. Lett. 21, 2023 (1996)

    Article  ADS  Google Scholar 

  7. X. Liu, R.M. Kurtz, A. Braun, H.H. Liu, Z. Sacks, T. Juhasz: OSA Tech. Dig. Ser. 11, 169 (1997)

    Google Scholar 

  8. R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, T. Juhasz: J. Refract. Surg. 14, 541 (1998)

    Google Scholar 

  9. A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski: Appl. Phys. B 74, 419 (2002)

    Article  ADS  Google Scholar 

  10. J.H. Marburger: Prog. Quantum Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  11. M. Han, L. Zickler, M. Walter, G. Giese, F. Loesel, J.F. Bille: Proc. SPIE 5340, 55 (2004)

    Article  ADS  Google Scholar 

  12. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz: Opt. Commun. 191, 333 (2001)

    Article  ADS  Google Scholar 

  13. F.A. Duck: Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, London 1990)

  14. A.E. Siegman: Lasers (University Science Books, Sausalito 1986)

  15. The International Association for the Properties of Water and Steam: Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure (1997)

  16. W. Liu, O. Kosareva, L.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, S.L. Chin: Appl. Phys. B 76, 215 (2003)

    Article  ADS  Google Scholar 

  17. F. Williams, S.P. Varma, S. Hillenius: J. Chem. Phys. 64, 1549 (1976)

    Article  ADS  Google Scholar 

  18. G. Fibich, A.L. Gaeta: Opt. Lett. 25, 5 (2000)

    Article  Google Scholar 

  19. G.G. Luther, J.V. Moloney, A.C. Newell: Opt. Lett. 19, 862 (1992)

    Article  ADS  Google Scholar 

  20. C. De Michelis: IEEE J. Quantum Electron. QE-5, 188 (1969)

  21. P.K. Kennedy: IEEE J. Quantum Electron. QE-31, 2241 (1995)

  22. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  23. L.V. Keldysh: Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  24. Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Cook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, C.R. Thomson: IEEE J. Quantum Electron. QE-33, 127 (1997)

  25. N. Bloembergen: IEEE J. Quantum Electron. QE-10, 555 (1974)

  26. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 11437 (2000)

    Article  ADS  Google Scholar 

  27. F. Quéré, S. Guizard, P. Martin: Europhys. Lett. 56, 138 (2001)

    Article  ADS  Google Scholar 

  28. B. Rethfeld: Phys. Rev. Lett. 92, 187401-1 (2004)

    Article  ADS  Google Scholar 

  29. L. Sudrie, A. Couairon, M. Franco, B. Lammouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz: Phys. Rev. Lett. 89, 186 601 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.L. Arnold.

Additional information

PACS

72.20.Jv; 42.65.Jx; 42.65.Sf; 42.62.Be

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, C., Heisterkamp, A., Ertmer, W. et al. Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses. Appl. Phys. B 80, 247–253 (2005). https://doi.org/10.1007/s00340-004-1701-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1701-5

Keywords

Navigation