Applied Physics B

, Volume 79, Issue 8, pp 937–940 | Cite as

Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy

Rapid communication

Abstract

A novel laser system for rapid-wavelength scanning applications was developed. The wavelength-tuning mechanism is the soliton self-shift of femtosecond pulses in optical fiber. Increased coupling into the fiber causes an increased wavelength red-shift within the fiber. By varying the coupling efficiency, we can generate rapid wavelength scans. Here, we demonstrate tuning between 1.665 and 1.820 μm at 40 kHz repetition rate with 8 mW average output power. We applied this source to measure the overtone of the C–H stretch in gaseous butane.

Drawbacks, potential improvements of the system and possible applications in other fields are discussed.

Keywords

Soliton Butane Optical Power Lithium Niobate Femtosecond Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.T. Sanders: Appl. Phys. B 75, 799 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L.A. Kranendonk, J.W. Walewski, T. Kim, S. T. Sanders: Wavelength-agile sensor applied for HCCI engine measurements. In: 30th International Symposium on Combustion, 2004. Accepted for publicationGoogle Scholar
  3. 3.
    A.J. Rest, R. Warren, S. C. Murray: Appl. Spec. 50, 517 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    O.C. Mullins, N.B. Joshi, H. Groenzin, T. Daigle, C. Crowell, M.T. Joseph, A. Jamaluddin: Appl. Spec. 54, 624 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    F.M. Mitschke, L. F. Mollenauer: Opt. Lett., 11, 659 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    N. Nishizawa, T. Goto: IEEE Photonics Technol. Lett., 11, 325 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    A. Hasegawa: Optical Solitons in Fibers. (Springer, Berlin, 2nd edition, 1990, 2nd edn.)Google Scholar
  8. 8.
    P. Beaud, W. Hodel, B. Zysset, H.P. Weber: IEEE J. Quantum Electron., QE-23, 1938 (1987)Google Scholar
  9. 9.
    N. Nishizawa, R. Okamura, T. Goto: Jpn. J. Appl. Phys. 38, 4678 (1999)Google Scholar
  10. 10.
    E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi: IEEE J. Sel. Top. Quantum Electron., QE-6, 69 (2000)Google Scholar
  11. 11.
    R. Warren: Electronic version of the data published in H.A.J. Rest, R. Warren, S.C. Murray: Appl. Spec. 54, 517 (1996), provided by the author. Private communication (2003)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations