Skip to main content
Log in

Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the results of a systematic study of white light generation in different high band-gap optical media (BaF2, acrylic, water and BK-7 glass) using ultrashort (45 fs) laser pulses. We have investigated the influence of different parameters, such as focal position of the incident laser light within the medium, the polarization state of the incident laser radiation and the pulse duration of the incident laser beam on the white light generation. Our results indicate that for intense, ultrashort pulses, the position of physical focus inside the media is crucial in the generation, with high efficiency, of white light spectra over the wavelength range 400–1100 nm. Linearly polarized incident laser light generates white light with higher intensity in the blue region than circularly polarized light. Ultrashort (45 fs) pulses generate a flatter spectrum with higher white light conversion efficiency than longer (300 fs) pulses of the same laser power. We believe that a flat response over a wide range of wavelengths in the continuum may be efficiently compressed for generation of sub-10 fs pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Alfano: The supercontinuum laser source (Springer, Berlin 1989)

  2. V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden, S.L. Chin: Appl. Phys. B 77, 149 (2003)

    Article  ADS  Google Scholar 

  3. G .Yang, Y.R. Shen: Opt. Lett. 9, 510 (1984)

    Article  ADS  Google Scholar 

  4. R.L. Fork, C.V. Shank, C. Hirlimann, R. Yen, W.J. Tomlinson: Opt. Lett. 8, 1 (1983)

    Article  ADS  Google Scholar 

  5. P.B. Corkum, C. Rolland, T. Srinivasan-Rao: Phys. Rev. Lett. 57, 2268 (1986)

    Article  ADS  Google Scholar 

  6. M. Wittmann, A. Penzkofer: Opt. Commun. 126, 308 (1996)

    Article  ADS  Google Scholar 

  7. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz: App. Phys. B 65, 189 (1997)

    Article  ADS  Google Scholar 

  8. J.K. Ranka, R.W. Schirmer, A.L. Gaeta: Phys. Rev. Lett. 77, 3783 (1996)

    Article  ADS  Google Scholar 

  9. F.A. Ilkov, L.Sh. Ilkova, S.L. Chin: Opt. Lett. 18, 681 (1993)

    Article  ADS  Google Scholar 

  10. W.L. Smith, P. Liu, N. Bloembergen: Phys. Rev. A 15, 2396 (1977)

    Article  ADS  Google Scholar 

  11. N. Bloembergen: Opt. Commun. 8, 285 (1973)

    Article  ADS  Google Scholar 

  12. A. Brodeur, S.L. Chin: J. Opt. Soc. Am. B 16, 637 (1999)

    Article  ADS  Google Scholar 

  13. A. Brodeur, S.L. Chin: Phys. Rev. Lett. 80, 4406 (1998)

    Article  ADS  Google Scholar 

  14. M. Klesik, G. Katona, J.V. Moloney, E.M. Wright: Phys. Rev. Lett. 91, 043905 (2003)

    Article  ADS  Google Scholar 

  15. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz: Phys. Rev. Lett. 89, 186601 (2002)

    Article  ADS  Google Scholar 

  16. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Berge: Phys. Rev. Lett. 87, 213902 (2001)

    Article  ADS  Google Scholar 

  17. I.G. Koprinkov, A. Suda, P. Wang, K. Midorikawa: Phys. Rev. Lett. 84, 3847 (2000)

    Article  ADS  Google Scholar 

  18. H. Schroeder, S.L. Chin: Opt. Commun. 234, 399 (2004)

    Article  ADS  Google Scholar 

  19. A.K. Dharmadhikari, F.A. Rajgara, N.C. Reddy, A.S. Sandhu, D. Mathur: Opt. Express 12, 695 (2004)

    Article  ADS  Google Scholar 

  20. P. Lambropoulos: Phys. Rev. Lett. 29, 453 (1972)

    Article  ADS  Google Scholar 

  21. A.S. Sandhu, S Banerjee, D Goswami: Opt. Commun. 181, 101 (2000)

    Article  ADS  Google Scholar 

  22. S. Petit, A. Talebpour, A. Proulx, S.L. Chin: Opt. Commun. 175, 301 (2000)

    Article  Google Scholar 

  23. A. M. Perelomov, V.S. Popov, M.V. Terent’ev: Sov. Phys. JETP 23, 924 (1966)

    ADS  MathSciNet  Google Scholar 

  24. G. Fibich, B. Ilan: Phys. Rev. Lett. 89, 013901 (2004)

    Article  ADS  Google Scholar 

  25. F.A. Rajgara, M. Krishnamurthy, D. Mathur: J. Chem. Phys. 119, 12224 (2003)

    Article  ADS  Google Scholar 

  26. F.A. Rajgara, M. Krishnamurthy, D. Mathur: Phys. Rev. A 68, 023407 (2003)

    Article  ADS  Google Scholar 

  27. D.C. Hutchings, B.S. Wherrett: Optical Materials 3, 53 (1994)

    Article  ADS  Google Scholar 

  28. G.P. Agarwal: Nonlinear Fiber Optics (Academic, New York 2001)

  29. K. Midorikawa, H. Kawano, A. Suda, C. Nagura, M. Obara: Appl. Phys. Lett. 80, 923 (2004)

    Article  ADS  Google Scholar 

  30. M. Kolesik, J.V. Moloney, E.M. Wright: Phys. Rev. E 64, 046607 (2001)

    Article  ADS  Google Scholar 

  31. T. Brabec, F. Krausz: Phys. Rev. Lett. 78, 3282 (1997)

    Article  ADS  Google Scholar 

  32. A.L. Gaeta: Phys. Rev. Lett. 84, 3582 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mathur.

Additional information

PACS

52.38.Hb; 42.65.Jx; 42.65.Tg; 33.80.Wz; 52.35.Mw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dharmadhikari, A., Rajgara, F. & Mathur, D. Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses. Appl. Phys. B 80, 61–66 (2005). https://doi.org/10.1007/s00340-004-1682-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1682-4

Keywords

Navigation