Applied Physics B

, Volume 79, Issue 8, pp 969–978 | Cite as

Forces and spatial ordering of driven atoms in a resonator in the regime of fluorescence suppression

  • S. Zippilli
  • J. Asboth
  • G. Morigi
  • H. Ritsch


An atom in a high-Q cavity, which is coherently driven at the frequency of a cavity mode, exhibits strong suppression of fluorescence when the atomic decay rate exceeds the cavity linewidth. This effect is due to destructive interference of cavity and pump field, such that at the atomic position the total field intensity has a local minimum. For atomic ensembles the magnitude of the interference effect grows with atom number and depends on the relative atomic positions. It is strongest for a wavelength spaced array of atoms placed at the antinodes of the cavity mode. This suppresses fluorescence and enhanced collective scattering into the cavity mode. We analyze the mechanical forces in the regime where the interference condition is fulfilled. We show that the atomic pattern is mechanically stable whenever the driving frequency is red detuned with respect to the cavity frequency, irrespective of the atomic transition frequency. Hence atomic selforganization, as predicted in [6] can also occur in the parameter regime where superradiant scattering is suppressed by collective interference.


Cavity Mode Single Atom Destructive Interference Cavity Decay Dipole Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    see Cavity Quantum Electrodynamics, ed. by P.R. Berman (Academic Press, New York 1994)Google Scholar
  2. 2.
    H.W. Chan, A.T. Black, V. Vuletic: Phys. Rev. Lett. 90, 063003 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    A.T. Black, H.W. Chan, V. Vuletic: Phys. Rev. Lett. 91, 203001 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    D. Kruse, C. von Cube, C. Zimmerman, P.W. Courteille: Phys. Rev. Lett. 91, 183601 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    B. Nagorny, T. Elsässer, A. Hemmerich: Phys. Rev. Lett. 91, 153003 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    P. Domokos, H. Ritsch: Phys. Rev. Lett. 89, 253003 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S. Zippilli, G. Morigi, H. Ritsch: Phys. Rev. Lett. 93, 123002 (2004); S. Zippilli, G. Morigi, H. Ritsch: Eur. Phys. J. D (2004), DOI: 10.1140/epjd/e2004-00137-8ADSCrossRefGoogle Scholar
  8. 8.
    P.M. Alsing, D.A. Cardimona, H.J. Carmichael: Phys. Rev. A 45, 1793 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    P. Domokos, H. Ritsch: J. Opt. Soc. Am. B 20, 1098 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    P. Domokos, T. Salzburger, H. Ritsch: Phys. Rev. A 66, 043406 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Carmichael: An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, Heidelberg, New York 1993)Google Scholar
  12. 12.
    H.J. Kimble: In Cavity Quantum Electrodynamics, ed. by P.R. Berman (Academic Press, New York 1994) p. 203Google Scholar
  13. 13.
    V. Vuletic, S. Chu: Phys. Rev. Lett. 84, 3787 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    G. Hechenblaikner, M. Gangl, P. Horak, H. Ritsch: Phys. Rev. A 58, 3030 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Siegman: Lasers (university Science Books, Mill Valley 1986)Google Scholar
  16. 16.
    C. Cohen-Tannoudji: In Fundamental Systems in Quantum Optics, Proceedings of the Les Houches Summer School of Theoretical Physics, Session LIII, 1990, ed. by J. Dalibard, J.M. Raimond, J. Zinn-Justin (Elsevier Science, Amsterdam 1992)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Abteilung für QuantenphysikUlmGermany
  2. 2.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations