Skip to main content
Log in

New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The reflectivity of a semiconductor saturable absorber mirror (SESAM) is generally expected to increase with increasing pulse energy. However, for higher pulse energies the reflectivity can decrease again; we call this a ‘roll-over’ of the nonlinear reflectivity curve caused by inverse saturable absorption. We show for several SESAMs that the measured roll-over is consistent with two-photon absorption only for short (femtosecond) pulses, while a stronger (yet unidentified) kind of nonlinear absorption is dominant for longer (picosecond) pulses. These inverse saturable absorption effects have important technological consequences, e.g. for the Q-switching dynamics of passively mode-locked lasers. A simple equation using only measurable SESAM parameters and including inverse saturable absorption is derived for the Q-switched mode-locking threshold. We present various data and discuss the sometimes detrimental effects of this roll-over for femtosecond high repetition rate lasers, as well as the potentially very useful consequences for passively mode-locked multi-GHz lasers. We also discuss strategies to enhance or reduce this induced absorption by using different SESAM designs or semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom: Opt. Lett. 17, 505 (1992)

    Article  ADS  Google Scholar 

  2. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au: IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996)

    Article  Google Scholar 

  3. U. Keller: Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  4. U. Keller: Prog. Opt. 46, 1 (2004)

    Article  Google Scholar 

  5. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller: J. Opt. Soc. Am. B 16, 46 (1999)

    Article  ADS  Google Scholar 

  6. S.C. Zeller, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, K.J. Weingarten, U. Keller: Electron. Lett. 40, 875 (2004)

    Article  Google Scholar 

  7. R. Paschotta, L. Krainer, S. Lecomte, G.J. Spühler, S.C. Zeller, A. Aschwanden, D. Lorenser, H.J. Unold, K.J. Weingarten, U. Keller: New J. Phys. (2004) to appear

  8. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, U. Keller, C. Hönninger, M. Kumkar: Opt. Lett. 28, 367 (2003)

    Article  ADS  Google Scholar 

  9. A. Schlatter, S.C. Zeller, R. Grange, R. Paschotta, U. Keller: J. Opt. Soc. Am. B 21, 1469 (2004)

    Article  ADS  Google Scholar 

  10. A.C. Walker, A.K. Kar, W. Ji, U. Keller, S.D. Smith: Appl. Phys. Lett. 48, 683 (1986)

    Article  ADS  Google Scholar 

  11. D.J. Harter, Y.B. Band, E.I. Ippen: IEEE J. Quantum Electron. QE-21, 1219 (1985)

  12. E.R. Thoen, E.M. Koontz, M. Joschko, P. Langlois, T.R. Schibli, F.X. Kärtner, E.P. Ippen, L.A. Kolodziejski: Appl. Phys. Lett. 74, 3927 (1999)

    Article  ADS  Google Scholar 

  13. M. Haiml, R. Grange, U. Keller: Appl. Phys. B 79, 331 (2004)

    Article  Google Scholar 

  14. T.R. Schibli, E.R. Thoen, F.X. Kärtner, E.P. Ippen: Appl. Phys. B 70, S41 (2000)

  15. L.R. Brovelli, U. Keller, T.H. Chiu: J. Opt. Soc. Am. B 12, 311 (1995)

    Article  ADS  Google Scholar 

  16. O. Ostinelli, G. Almuneau, M. Ebnöther, E. Gini, M. Haiml, W. Bächtold: Electron. Lett. 40, 940 (2004)

    Article  Google Scholar 

  17. R. Grange, O. Ostinelli, M. Haiml, L. Krainer, G.J. Spühler, S. Schön, M. Ebnöther, E. Gini, U. Keller: Electron. Lett. (2004)

  18. E.W. Van Stryland, M.A. Woodall, H. Vanherzeele, M.J. Soileau: Opt. Lett. 10, 490 (1985)

    Article  ADS  Google Scholar 

  19. H.K. Tsang, R.V. Penty, I.H. White, R.S. Grant, W. Sibbett, J.D. Soole, H.P. LeBlanc, N.C. Andreadakis, R. Bhat, M.A. Koza: J. Appl. Phys. 70, 3992 (1991)

    Article  ADS  Google Scholar 

  20. D. Vignaud, J.F. Lampin, F. Mollot: Appl. Phys. Lett. 85, 239 (2004)

    Article  ADS  Google Scholar 

  21. M.D. Dvorak, B.L. Justus: Opt. Commun. 114, 147 (1995)

    Article  ADS  Google Scholar 

  22. R.A. Bendorius, E.K. Maldutis: Sov. Phys. Coll. 23, 69 (1983)

    Google Scholar 

  23. E.R. Thoen, E.M. Koontz, D.J. Jones, D. Barbier, F.X. Kärtner, E.P. Ippen, L.A. Kolodziejski: IEEE Photon. Technol. Lett. 12, 149 (2000)

    Article  ADS  Google Scholar 

  24. H.A. Haus: IEEE J. Quantum Electron. QE-12, 169 (1976)

  25. R. Paschotta, U. Keller: Appl. Phys. B 73, 653 (2001)

    Article  ADS  Google Scholar 

  26. V. Liverini, S. Schön, R. Grange, M. Haiml, S.C. Zeller, U. Keller: Appl. Phys. Lett. 84, 4002 (2004)

    Article  ADS  Google Scholar 

  27. K.J. Weingarten, G.J. Spühler, U. Keller, L. Krainer: US Patent No. 6 538 298 (2003)

  28. Z. Shi, H. Zogg, P. Müller, I.D. Jung, U. Keller: Appl. Phys. Lett. 69, 3474 (1996)

    Article  ADS  Google Scholar 

  29. S. Schön, M. Haiml, L. Gallmann, U. Keller: Opt. Lett. 27, 1845 (2002)

    Article  ADS  Google Scholar 

  30. D.E. Wohlert, H.C. Lin, K.L. Chang, G.W. Pickrell, J.J.H. Epple, K.C. Hsieh, K.Y. Cheng: Appl. Phys. Lett. 75, 1371 (1999)

    Article  ADS  Google Scholar 

  31. D.J. Ripin, J.T. Gopinath, H.M. Shen, A.A. Erchak, G.S. Petrich, L.A. Kolodziejski, F.X. Kärtner, E.P. Ippen: Opt. Commun. 214, 285 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Grange.

Additional information

PACS

42.60.Fc; 42.70.Nq; 78.20.Ci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grange, R., Haiml, M., Paschotta, R. et al. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B 80, 151–158 (2005). https://doi.org/10.1007/s00340-004-1622-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1622-3

Keywords

Navigation