Skip to main content
Log in

Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The impulsive superheating of matter by an intense, ultrashort laser pulse drives material expansion into vacuum (ablation) and an associated formation of nanoparticles. The underlying dynamics of particle formation are complex and direct experimental probes of the rapid material evolution are essential. Femtosecond lasers coupled to modern synchrotrons offer an important new opportunity to probe ejecta dynamics on an atomic lengthscale. Here, the impulsive heating of a semiconductor (silicon) by an intense femtosecond laser pulse leads to material ejection and time-resolved photoemission spectroscopy probes rapid solidification kinetics occurring within the ejecta. Transient photoemission peak-shifts indicate that material is ejected predominantly as liquid droplets and that solidification occurs rapidly (<50 ps). The solidification time suggests that vacuum ejection leads to significantly enhanced undercooling compared to what has been obtained by more conventional quenching techniques; this may be of interest in attempts to ‘trap’ novel material states associated with extreme laser heating. Finally, a low fraction of vapor particles in the ejecta supports a view that the size-distribution of ejected particles is set by an initial fragmentation process rather than by vapor condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)

    CAS  Google Scholar 

  2. A.M. Morales, C.M. Lieber: Science 279, 208 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. P.E. Dyer, S. Farrar, P.H. Key: Appl. Phys. Lett. 60, 1890 (1992)

    Article  Google Scholar 

  4. T.E. Glover: J. Opt. Soc. Am. B 20, 125 (2003)

    Google Scholar 

  5. M. Campagna, R. Rosei: Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation (North-Holland, Amsterdam, 1990)

  6. S. Laville, F. Vidal, T.W. Johnston, O. Barthelemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi: Phys. Rev. E 66, 066415 (2002)

    Article  Google Scholar 

  7. T.E. Glover, G.D. Ackerman, P.A. Heimann, Z. Hussain, R.W. Lee, H.A. Padmore, C. Ray, R.W. Schoenlein, W.F. Steele, D.A. Young: Phys. Rev. Lett. 90, 236102 (2003)

    Article  Google Scholar 

  8. R.C. Weast, G.L. Tuve (Eds.) Handbook of Chemistry and Physics (The Chemical Rubber CO., Ohio, 1972)

  9. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. Von Der Linde: J. Appl. Phys. 85, 3301 (1999)

    Article  Google Scholar 

  10. C. Li, K. Lu, Y. Wang, K. Tamura, S. Hosokawa, M. Inui: Phys. Rev. B 59, 1571 (1999)

    Article  Google Scholar 

  11. V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva: Liquid Semiconductors (Plenum Press, New York, 1969)

  12. J.W. Gadzuk: Phys. Rev. B 14, 2267 (1976)

    Article  Google Scholar 

  13. F. Bechstedt, R. Enderlein: Phys. Stat. Sol. (B) 94, 239 (1979)

    Google Scholar 

  14. F.G. Allen, G.W. Gobeli: Phys. Rev. 127, 150 (1962)

    Article  Google Scholar 

  15. F. Bechstedt, R. Enderlein, R. Fellenberg, P. Streubel, A. Meisel: J. Electron. Spectros. Relat. Phenom. 31, 131 (1983)

    Article  Google Scholar 

  16. P. Baeri, S.U. Campisano, G. Foti, E. Rimini: J. Appl. Phys. 50, 788 (1979).

    Article  Google Scholar 

  17. T. Ohyanagi, A. Miyashita, K. Murakami, O. Yoda: Jpn. J. Appl. Phys. 33, 2586 (1994)

    Article  Google Scholar 

  18. B.L. Holian, D.E. Grady: Phys. Rev. Lett. 60, 1355 (1988)

    Article  Google Scholar 

  19. D. Perez, L.J. Laurent: Phys. Rev. Lett. 89, 255504 (2002)

    Article  Google Scholar 

  20. R.H. Doremus: Rates of Phase Transformations (Academic Press Inc., Orlando, 1985)

  21. P.H. Bucksbaum, J. Boker: Phys. Rev. Lett. 53, 182 (1984)

    Article  Google Scholar 

  22. R. Kelly, A. Miotello: Applied Surface Science 9698, 205 (1996)

  23. L.D. Landau, E.M. Lifshitz: Fluid Mechanics: Landau and Lifshitz Course of Theoretical Physics Vol. 6 (Butterworth Heinemann, Oxford, 2000)

  24. D.A. Young, E.M. Corey: J. Appl. Phys. 78, 3748 (1995)

    Article  Google Scholar 

  25. G. Devaud, D. Turnbull: Appl. Phys. Lett. 46, 844 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Glover.

Additional information

PACS

82.60.Qr; 87.64.Lg; 62.50.+p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, T., Ackerman, G., Lee, R. et al. Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics. Appl Phys B 78, 995–1000 (2004). https://doi.org/10.1007/s00340-004-1449-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1449-y

Keywords

Navigation