Advertisement

Applied Physics B

, Volume 78, Issue 7–8, pp 989–994 | Cite as

Observation of high energy photoelectrons from solids at moderate laser intensity

  • A.N. BelskyEmail author
  • H. Bachau
  • J. Gaudin
  • G. Geoffroy
  • S. Guizard
  • P. Martin
  • G. Petite
  • A. Philippov
  • A.N. Vasil’ev
  • B.N. Yatsenko
Article

Abstract

We investigate the photoemission for a set of wide band-gap crystals irradiated by femtosecond Ti-Sapphire laser pulses at intensities varying from 0.5 to 6 TW/cm2 (below the optical breakdown threshold). The measured total electron yield increases linearly with the laser intensity in this intensity range. An intense and wide plateau of high energy electrons appears in the photoelectron spectra at excitation intensities larger than 1 TW/cm2. The exponential cut-off of this plateau reaches 40 eV at maximal applied intensities. In order to explain such a behavior, we propose a mechanism where the heating is due to a sequence of direct interbranch one- and multi-photon transitions in the conduction band.

Keywords

Laser Intensity Photoelectron Spectrum Excitation Intensity High Energy Electron Optical Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Banfi, G. Ferrini, M. Peloi, F. Parmigiani: Phys. Rev. B 67, 035428 (2003) CrossRefGoogle Scholar
  2. 2.
    F. Quéré, S. Guizard, Ph. Martin, G. Petite: Phys. Rev. B 61, 9883 (2000) CrossRefGoogle Scholar
  3. 3.
    A. Belsky, A.N. Vasil’ev, B. Yatsenko, H. Bachau, P. Martin, G. Geoffroy, S. Guizard: J. Phys. IV France 108, 113 (2003) Google Scholar
  4. 4.
    A.N. Belsky, A.N. Vasil’ev, B.N. Yatsenko: Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya 2, 38 (2003) Google Scholar
  5. 5.
    V. Bagnoud, F. Salin: Appl. Phys. B 70, S165 (2000) Google Scholar
  6. 6.
    D. Arnold, E. Cartier: Phys. Rev. B 46, 15102 (1992) CrossRefGoogle Scholar
  7. 7.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 11437 (2000) CrossRefGoogle Scholar
  8. 8.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: Phys. Rev. B 53, 1749 (1996) CrossRefGoogle Scholar
  9. 9.
    Ph. Daguzan, S. Guizard, K. Krastev, P. Martin, G. Petite: Phys. Rev. Lett. 77, 2352 (1994) CrossRefGoogle Scholar
  10. 10.
    G. Petite, P. Agostini, R. Trainham, E. Mevel, P. Martin: Phys. Rev. B 45, 12210 (1992) CrossRefGoogle Scholar
  11. 11.
    D.I. Vaisburd, P.A. Pal’yanov, B.N. Semin: J. Appl. Spectrosc. 62, 130 (1995) Google Scholar
  12. 12.
    L.V. Keldysh: Sov. Phys. JETP 20, 1307 (1965) Google Scholar
  13. 13.
    A.N. Vasil’ev, Y. Fang, V.V. Mikhailin: Phys. Rev. B 60, 5340 (1999) CrossRefGoogle Scholar
  14. 14.
    F.H.M. Faisal, J.Z. Kaminski: Phys. Rev. A 56, 748 (1997) CrossRefGoogle Scholar
  15. 15.
    L. Plaja, L. Roso-Franco: Phys. Rev. B 45, 8334 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A.N. Belsky
    • 1
    Email author
  • H. Bachau
    • 1
  • J. Gaudin
    • 1
  • G. Geoffroy
    • 2
  • S. Guizard
    • 2
  • P. Martin
    • 1
  • G. Petite
    • 2
  • A. Philippov
    • 1
  • A.N. Vasil’ev
    • 3
  • B.N. Yatsenko
    • 1
    • 3
  1. 1.Centre Lasers Intenses et Applications UMR5107 CNRS-CEA-Université de Bordeaux ITalence CedexFrance
  2. 2.Laboratoire des Solides Irradiés(UMR7642 CEA/DSM/DRECAM-CNRS-Ecole Polytechnique)Palaiseau CedexFrance
  3. 3.Physics Department, Synchrotron Radiation LaboratoryMoscow State UniversityMoscowRussia

Personalised recommendations