Skip to main content
Log in

Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new frequency chain was demonstrated to measure an optical frequency standard based on a rovibrational molecular transition in the 28-THz spectral region accessible to a CO2 laser. It uses a femtosecond-laser frequency comb generator and two laser diodes at 852 nm and 788 nm as intermediate oscillators, with their frequency difference phase locked to the CO2 laser. The rf repetition rate of the femtosecond laser was compared with a 100-MHz signal from a hydrogen maser, located at BNM-SYRTE. The 100-MHz signal is transmitted by amplitude modulation of a 1.55-μm laser diode through a 43-km telecommunication optical fibre. As a first example, the absolute measurement of a saturation line of OsO4 in the vicinity of the P(16) laser line of CO2 is reported with a relative uncertainty of 10-12, limited by the CO2/OsO4 frequency day-to-day reproducibility. The current limit on the stability of the frequency measurement is 4×10-13 at 1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch: Phys. Rev. Lett. 82, 3568 (1999)

    Article  Google Scholar 

  2. S.T. Cundiff, J. Ye, J.L. Hall: Rev. Sci. Instrum. 72, 3749 (2001)

    Google Scholar 

  3. J. Reichert, R. Holzwarth, T. Udem, T.W. Hänsch: Opt. Comm. 172, 59 (1999)

    Article  Google Scholar 

  4. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff: Science 288, 635 (2000)

    Article  Google Scholar 

  5. T.J. Quinn: Metrologia 36, 211 (1999)

    Article  Google Scholar 

  6. V. Bernard, G. Nogues, Ch. Daussy, L.F. Constantin, Ch. Chardonnet: Metrologia 34, 314 (1997)

    Article  Google Scholar 

  7. V. Bernard, C. Daussy, G. Nogues, L. Constantin, P.E. Durand, A. Amy-Klein, A. van Lerberghe, Ch. Chardonnet: IEEE J. Quant. Electron. QE-33 , 1282 (1997)

  8. O. Acef: IEEE Trans. Instrum. Meas. 46, 162 (1997)

    Google Scholar 

  9. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S. Chang, A.N. Luiten, C. Salomon: Phys. Rev. Lett. 82, 4619 (1999)

    Article  Google Scholar 

  10. B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J.-J. Zon dy, D. Touahri, O. Acef, A. Clairon: Eur. Phys. J. D 1, 227 (1998)

    Article  Google Scholar 

  11. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, N. Kawano: IEEE Trans. Instrum. Meas. 49, 19 (2000)

    Article  Google Scholar 

  12. S.N. Bagayev, S.V. Chepurov, V.M. Klementyev, D.B. Kolker, S.A. Kuznetsov, Yu.A. Matyugin, V.S. Pivtsov, V.F. Zakharyash: Laser Phys. 11, 1094 (2001)

    Google Scholar 

  13. D. Touahri, O. Acef, J.-J. Zondy: Opt. Lett. 21, 213 (1996)

    Google Scholar 

  14. Ch. Chardonnet, Ch.J. Bordé: J. Mol. Spectrosc. 167, 71 (1994)

    Article  Google Scholar 

  15. O. Acef, F. Michaud, G.V. Rovera: IEEE Trans. Instrum. Meas. 48, 567 (1999)

    Article  Google Scholar 

  16. A. Shelkovnikov, Ch. Grain, C.T. Nguyen, R.J. Butcher, A. Amy-Klein, Ch. Chardonnet: Appl. Phys. B 73, 93 (2001)

    Google Scholar 

  17. A. Clairon, A. van Lerberghe, C. Salomon, M. Ouhayoun, Ch.J. Bordé: Opt. Commun. 35, 368 (1980)

    Article  Google Scholar 

  18. O. Acef: Opt. Commun. 134, 479 (1997)

    Article  Google Scholar 

  19. V.A. Alekseev, D.D. Krylova, O. Acef: Opt. Commun. 174, 163 (2000)

    Article  Google Scholar 

  20. P.V. Pokasov, R. Holzwarth, Th. Udem, M. Zimmerman, J. Reichert, M. Niering, T.W. Hänsch, A.K. Dmitriyev, S.N. Bagayev, P. Lemonde, G. Santarelli, P. Laurent, M. Abgrall, A. Clairon: in Proc. 6th Frequency Standards and Metrology Symp., ed. by P. Gill (World Scientific, Singapore 2002) p. 510

  21. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, T.W. Hänsch: Phys. Rev. Lett. 84, 3232 (2000)

    Article  Google Scholar 

  22. T.A. Birks, J.C. Knight, P.St.J. Russel: Opt. Lett. 22, 961 (1997)

    Google Scholar 

  23. J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 25 (2000)

    Google Scholar 

  24. P. Wolf, S. Bize, A. Clairon, A.N. Luiten, G. Santarelli, M.E. Tobar: Phys. Rev. Lett. 6, 9006 (2003)

    Google Scholar 

  25. C. Grain, A. Shelkovnikov, A. Amy-Klein, R.J. Butcher, C. Chardonnet: IEEE J. Quant. Electron. QE-38, 1406 (2002)

    Google Scholar 

  26. S.G. Karshenboim: Can. J. Phys. 78, 639 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amy-Klein.

Additional information

PACS

06.20.-f; 42.62.Eh; 06.30.Ft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amy-Klein, A., Goncharov, A., Daussy, C. et al. Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard. Appl Phys B 78, 25–30 (2004). https://doi.org/10.1007/s00340-003-1335-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1335-z

Keywords

Navigation