Skip to main content
Log in

Measurement of CrO in flames by cavity ringdown spectroscopy

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

CrO is an important intermediate in the high temperature oxidation chemistry of chromium containing species. This work reports the first detection of CrO in a flame. The B 5Π-X 5Π electronic transition was probed by cavity ringdown spectroscopy (CRDS) in a lean (ϕ=0.38), low-pressure, flat, laminar hydrogen-oxygen-argon flame seeded with Cr(CO)6. The previous B 5Π-X 5Π CrO spectrum of Hocking et al. (605.0 nm-606.5 nm) is extended from the band head located at 605.6 nm to 614.4 nm. The temperature profiles of the doped and undoped flames were obtained from measurements of OH laser- induced fluorescence. Seeding the flame with Cr(CO)6 increased the flame temperature by approximately 150 K. The concentration profile of CrO was measured as a function of height above the burner. CrO absorption signals were converted to concentration using the measured temperature profile and absorption cross-section calculated from lifetimes by Hedgecock et al. A lower limit peak CrO concentration of 1.6 ppb was found in the flame. Some uncertainty in the cross-section remains. Comparisons to calculations using STANJAN indicate that CrO is present in flames at super equilibrium concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Rubin: Prog. Environ. Sci. Technol. 33, 3062 (1999)

    Article  Google Scholar 

  2. S.D. Flora, M. Bagnaxco, D. Werr, P. Zanacchi: Mutation Res. 99, 238 (1990)

    Google Scholar 

  3. S.D. Flora, K.E. Wetternhahn: Life Chem. Reports 7 (1989)

  4. W. Qi, R.J. Reiter, D. X Tan, J.J. Garcia, L.C. Manchester, M. Karbownik, J.R. Calvo: Environ. Health Persp. 108, 399 (2000)

    Google Scholar 

  5. P. Monkhouse: Prog. Energy Combust. Sci. Technol. 28, 331 (2002)

    Article  Google Scholar 

  6. W.P. Linak, J.V. Ryan, J.O.L. Wendt: Combust. Sci. Technol. 116, 479 (1996)

    Google Scholar 

  7. Y. Yoon, C. Reyes, A.D. Jones, P. Kelly, D.P.Y. Chang, I.M. Kennedy: Twenty-Sixth Symposium (International) on Combustion, Combustion Inst., 1953 (1996)

  8. Kashireninov, O.E., Fontijn, A., Combust. Flame 113, 498 (1998)

    Google Scholar 

  9. W.P. Linak, J.O.L. Wendt: Prog. Energy Combust. Sci. Technol. 19, 145 (1993)

    Google Scholar 

  10. B. Guo, I.M. Kennedy: Combust. Flame 126, 1557 (2001)

    Article  Google Scholar 

  11. I.M. Kennedy, Y. Zhang, A. Daniel Jones, D.P.Y. Chang, P.B. Kelly, Y. Yoon: Combust. Flame 116, 233 (1999)

    Article  Google Scholar 

  12. B.B. Ebbinghaus: Combust. Flame 93, 119 (1993)

    Google Scholar 

  13. I.M. Hedgecock, N. Naulin, M. Costes: J. Mol. Spectrosc. 184, 462 (1997)

    Article  Google Scholar 

  14. A. O’Keefe, D.A.G. Deacon: Rev. Sci. Instrum. 59, 2544 (1988)

    Article  Google Scholar 

  15. J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally: Chem Rev. 97, 25 (1997)

    Article  Google Scholar 

  16. K.W. Busch, M.A. Busch, Eds, Cavity-Ringdown Spectroscopy: An Ultratrace- Absorption Measurement Technique, Am. Chem. Soc., WA, DC, 1999

  17. G. Berden, R. Peeters, G. Meijer: Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  18. S. Cheskis: Prog. Energy Combust. Sci. 25, 233 (1999)

    Article  Google Scholar 

  19. A. McIlroy, J.B. Jeffries: Applied Combustion Diagnostics, Kohse-Hoinghaus, K. Jeffries, J.B. (Eds), Taylor Francis (2002)

  20. C. Ghosh: Z. Physik 78, 521 (1932)

    Google Scholar 

  21. M. Nimomiya: J. Phys. Soc. Jpn. 10, 829 (1955)

    Google Scholar 

  22. W.H. Hocking, A.J. Merer, D.J. Milton, W.E. Jones, G. Krishnamurty: Can. J. Phys. 58, 516 (1980)

    Google Scholar 

  23. A.J. Merer: Annu. Rev. Phys. Chem. 40, 407 (1989)

    Article  Google Scholar 

  24. M. Barnes, P.G. Hajigeorgiou, J.A. Merer: J. Mol. Spectrosc. 160, 289 (1993)

    Article  Google Scholar 

  25. A.S.C. Cheung, W. Zyrnicki, J.A. Merer: J. Mol. Spectrosc. 104, 315 (1984)

    Article  Google Scholar 

  26. U. Sassenberf, A.S.C. Cheung, J.A. Merer: Can. J. Phys. 62, 1610 (1984)

    Google Scholar 

  27. A. McIlroy: Chem. Phys. Lett. 151, 296 (1998)

    Google Scholar 

  28. A. McIlroy, T.D. Hain, H.A. Michelson, T.A. Cool: Proc. Combustion Inst. 28, 1647 (2000)

    Google Scholar 

  29. R.J. LeRoy: RKR1 – A Computer Program Implementing First-Order RKR method for Determining Diatom Potential Energy Curves from Spectroscopic Constant, Guelph-Waterloo Ctr. Graduate Work in Chem., University of Waterloo, Waterloo, Ontario, Canada (1992)

  30. A.J. Merer: Annu. Rev. Phys. Chem. 40, 407 (1989)

    Article  Google Scholar 

  31. W.C. Reynolds, Stanjan, Dept. Mech. Eng., Stanford University, 1986

  32. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller: Sandia National Laboratories, SAND86–8246.UC-32 (1986)

  33. R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller: Sandia National Laboratories, SAND85–8240.UC-4 (1987)

  34. R.J. Kee, F.M. Rupley, J.A. Miller: Sandia National Laboratories, SAND89–8009.UC-401 (1991)

  35. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R. Hanson, S.W. Song, W.C. Gardiner Jr., V. Lissianski, Z. Qin: sponsored by Gas Research Institute, available at http://www.me.berkeley.edu/gri-mech/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. McIlroy.

Additional information

PACS

82.33.Vx; 42.62.Fi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcox, B., Chrysostom, E., McIlroy, A. et al. Measurement of CrO in flames by cavity ringdown spectroscopy. Appl Phys B 77, 535–540 (2003). https://doi.org/10.1007/s00340-003-1275-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1275-7

Keywords

Navigation