Skip to main content
Log in

Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the virtues of the pump–probe approach for controlled supercontinuum generation in nonlinear media, using the example of pulse compression by cross-phase modulation in dielectrics. Optimization of a strong (pump) pulse and a weak (probe) pulse at the input into the medium opens the route to effective control of the supercontinuum phases at the output. We present an approximate semi-analytical approach which describes nonlinear transformation of the input pulse into the output pulse. It shows how the input and the output chirps are connected via a time-warp transformation which is almost independent of the shape of the probe pulse. We then show how this transformation can be used to optimize the supercontinuum generation to produce nearly single-cycle pulses tunable from mid-infrared to ultraviolet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Agrawal: Nonlinear Fiber Optics (Academic, San Diego 1995)

  2. R.W. Boyd: Nonlinear Optics (Academic, San Diego 1992)

  3. Although the slowly varying envelope approximation breaks down near the single-cycle regime, previous analytical studies of relevance to the present work have used this approximation to show the potential for pulse compression by XPM. See e.g. E.M. Dianov, P.V. Mamyshev, A.M. Prokhorov, S.V. Chernikov: Kvant. Elektron. 15, 1941 (1988); A.M. Zheltikov, N.I. Koroteev, A.N. Naumov: JETP 88, 857 (1999)

    Google Scholar 

  4. C.G. Durfee III, S. Backus, H.C. Kapteyn, M.M. Murnane: Opt. Lett. 24, 697 (1999)

    Article  ADS  Google Scholar 

  5. A.V. Sokolov, D.R. Walker, D.D. Yavuz, G.Y. Yin, S.E. Harris: Phys. Rev. Lett. 87, 033402 (2001); Phys. Rev. Lett. 85, 562 (2000)

    Article  ADS  Google Scholar 

  6. N. Zhavoronkov, G. Korn: Phys. Rev. Lett. 88, 203901 (2002) and references therein

    Article  ADS  Google Scholar 

  7. R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, C.H. Greene, M.M. Murnane, H.C. Kapteyn: Phys. Rev. Lett. 88, 013903 (2002)

    Article  ADS  Google Scholar 

  8. R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank: Opt. Lett. 12, 483 (1987)

    Article  ADS  Google Scholar 

  9. A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma: Opt. Lett. 22, 102 (1997)

    Article  ADS  Google Scholar 

  10. M. Nisoli, S.D. Silvestri, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz: Opt. Lett. 22, 522 (1997)

    Article  ADS  Google Scholar 

  11. A. Baltuška, T. Fuji, T. Kobayashi: Opt. Lett. 27, 306 (2002)

    Article  ADS  Google Scholar 

  12. A.M. Weiner: Prog. Quantum Electron. 19, 161 (1995)

    Article  ADS  Google Scholar 

  13. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois: Opt. Lett. 25, 575 (2000)

    Article  ADS  Google Scholar 

  14. V. Kalosha, M. Spanner, J. Herrmann, M.Y. Ivanov: Phys. Rev. Lett. 88, 103901 (2002)

    Article  ADS  Google Scholar 

  15. M. Spanner, M. Ivanov: Opt. Lett. 28, 576 (2003)

    Article  ADS  Google Scholar 

  16. The propagation would have been completely linear if it were not for the interplay between spectral broadening and dispersion: spectral broadening feeds into dispersion which changes the pulse. This, in turn, affects further spectral broadening which affects dispersion, and so on

  17. M. Spanner, M.Y. Ivanov, V. Kalosha, J. Herrmann, D. Wiersma, M. Pshenichnikov: Opt. Lett. 28, 749 (2003)

    Article  ADS  Google Scholar 

  18. C.J. Bardeen, V.V. Yakovlev, K.R. Wilson, S.D. Carpenter, P.M. Weber, W.S. Warren: Chem. Phys. Lett. 280, 151 (1997)

    Article  ADS  Google Scholar 

  19. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn: Nature 406, 164 (2000)

    Article  ADS  Google Scholar 

  20. R.S. Judson, H. Rabitz: Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  21. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber: Science 282, 919 (1998)

    Article  ADS  Google Scholar 

  22. T.C. Weinacht, J.L. White, P.H. Bucksbaum: J. Phys. Chem. A 103, 10166 (1999)

    Article  Google Scholar 

  23. R.J. Levis, G.M. Menkir, H. Rabitz: Science 292, 709 (2001)

    Article  ADS  Google Scholar 

  24. F.G. Omenetto, A.J. Taylor, M.D. Moores, D.H. Reitze: Opt. Lett. 26, 938 (2001)

    Article  ADS  Google Scholar 

  25. See e.g. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn: Phys. Rev. Lett. 88, 173901 (2002); A.V. Husakou, J. Herrmann: Phys. Rev. Lett. 87, 203901 (2001)

    Article  ADS  Google Scholar 

  26. V.P. Kalosha, J. Herrmann: Phys. Rev. Lett. 85, 1226 (2000)

    Article  ADS  Google Scholar 

  27. R.K. Bullough, P.M. Jack, P.W. Kitchenside, R. Saunders: Phys. Scr. 20, 364 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ivanov.

Additional information

PACS

42.65.Re; 42.65.Ky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanner, M., Pshenichnikov, M., Olvo, V. et al. Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses. Appl Phys B 77, 329–336 (2003). https://doi.org/10.1007/s00340-003-1185-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1185-8

Keywords

Navigation