Skip to main content
Log in

Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2003

Abstract

Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation – quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Alfano: The Supercontinuum Laser Source (Springer-Verlag, New York 1989)

  2. J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  3. T.A. Birks, W.J. Wadsworth, P.S.J. Russell: Opt. Lett. 25, 1415 (2000)

    Article  ADS  Google Scholar 

  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn: Phys. Rev. Lett. 88, 173901 (2002)

    Article  ADS  Google Scholar 

  5. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A.P. Shreenath, R. Trebino, R.S. Windeler: Opt. Lett. 27, 1174 (2002)

    Article  ADS  Google Scholar 

  6. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W.J. Wadsworth, J.C. Knight, P.S. Russell: J. Opt. Soc. Am. B 19, 2165 (2002)

    Article  ADS  Google Scholar 

  7. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.-P.M. Man, P.S.J. Russell: J. Opt. Soc. Am. B 19, 2148 (2002)

    Article  ADS  Google Scholar 

  8. J.M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R.S. Windeler: Opt. Express 10, 1215 (2002)

    Article  ADS  Google Scholar 

  9. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, M. Kaivola: Opt. Express 10, 1083 (2002)

    Article  ADS  Google Scholar 

  10. B.R. Washburn, S.E. Ralph, R.S. Windeler: Opt. Express 10, 575 (2002)

    Article  ADS  Google Scholar 

  11. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen: J. Opt. Soc. Am. B 19, 765 (2002)

    Article  ADS  Google Scholar 

  12. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler: Opt. Lett. 26, 608 (2000)

    Article  ADS  Google Scholar 

  13. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, E. Scherzer: Opt. Lett. 27, 1800 (2002)

    Article  ADS  Google Scholar 

  14. R. Holzwarth, A.Y. Nevsky, M. Zimmermann, T. Udem, T.W. Hänsch, J. v. Zanthier, H. Walther, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, M.N. Skvortsov, S.N. Bagayev: Appl. Phys. B 73, 269 (2001)

    Article  ADS  Google Scholar 

  15. T. Udem, R. Holzwarth, T.W. Hänsch: Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  16. S.A. Diddams, T. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W.M. Itano, W.D. Lee, C.W. Oates, K.R. Vogel, D.J. Wineland: Science 293, 825 (2001)

    Article  ADS  Google Scholar 

  17. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stenz, R.S. Windeler, J.L. Hall, S.T. Cundiff: Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  18. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler: Phys. Rev. Lett. 90, 113904 (2003)

    Article  ADS  Google Scholar 

  19. Th. Udem, J. Reichert, R. Holzwarth, S. Diddams, D. Jones, J. Ye, S. Cundiff, T. Hänsch, J. Hall: ‘A new type of frequency chain and its application to fundamental frequency metrology’, in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, F.S. Pavone, G.F. Bassani, M. Inguscio, T.W. Hänsch (Springer, Berlin 2001) pp. 125-144

  20. L. Hollberg, C.W. Oates, E.A. Curtis, E.N. Ivanov, S.A. Diddams, T. Udem, H.G. Robinson, J.C. Bergquist, R.J. Rafac, W.M. Itano, R.E. Drullinger, D.J. Wineland: IEEE J. Quantum Electron. QE-37, 1502 (2001)

  21. M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida: Opt. Fiber Tech. 4, 215 (1998)

    Article  ADS  Google Scholar 

  22. H. Kubota, K.R. Tamura, M. Nakazawa: J. Opt. Soc. Am. B 16, 2223 (1999)

    Article  ADS  Google Scholar 

  23. O. Boyraz, J. Kim, M.N. Islam, F. Coppinger, B. Jalali: J. Lightwave Technol. 18, 2167 (2000)

    Article  ADS  Google Scholar 

  24. N.R. Newbury, B.R. Washburn, K.L. Corwin, R.S. Windeler: Opt. Lett. 28, 944 (2003)

    Article  ADS  Google Scholar 

  25. A.L. Gaeta: Opt. Lett. 27, 924 (2002)

    Article  ADS  Google Scholar 

  26. A.V. Husakou, J. Herrmann: Phys. Rev. Lett. 87, 203901 (2001)

    Article  ADS  Google Scholar 

  27. J.M. Dudley, S. Coen: Opt. Lett. 27, 1180 (2002)

    Article  ADS  Google Scholar 

  28. P.D. Drummond, J.F. Corney: J. Opt. Soc. Am. B 18, 139 (2001)

    Article  ADS  Google Scholar 

  29. J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 796 (2000)

    Article  ADS  Google Scholar 

  30. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus: J. Opt. Soc. Am. B 6, 1159 (1989)

    Article  ADS  Google Scholar 

  31. S. Coen, D.A. Wardle, J.D. Harvey: Phys. Rev. Lett. 89, 273901 (2002)

    Article  Google Scholar 

  32. D.A. Wardle: Raman Scattering in Optical Fibres, Ph.D. thesis, Dept. of Physics, Univ. of Auckland (1999)

  33. N.R. Newbury, K.L. Corwin: In ‘Proc. Symp. Optical Fiber Measurements in Boulder’, USA, 2002, p. 7

  34. E.N. Ivanov, S.A. Diddams, L. Hollberg: IEEE Trans. Ultrasonics, Ferroelectrics, and Freq. Control 50, 355 (2003)

    Article  Google Scholar 

  35. R.P. Scott, C. Langrock, B.H. Kolner: IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001)

    Article  ADS  Google Scholar 

  36. G.P. Agrawal: Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Francisco 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.L. Corwin.

Additional information

PACS

42.50.Lc; 42.65.Re; 42.81.Dp; 02.60.Cb

An Erratum to this article can be found at

http://dx.doi.org/10.1007/s00340-003-1301-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corwin, K., Newbury, N., Dudley, J. et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Appl Phys B 77, 269–277 (2003). https://doi.org/10.1007/s00340-003-1175-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1175-x

Keywords

Navigation