Skip to main content
Log in

Negative thermal expansion coefficient and amorphization in defective 4H-SiC

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents thermal expansion coefficient (TEC) and amorphization in 4H-SiC containing point defects at different concentrations. We considered vacancy defects, interstitial defects, and Frenkel pair defects and investigated the thermomechanical response of the lattice over a wide range of temperatures using classical molecular dynamics simulations. The results show that 4H-SiC with vacancy defects exhibits a negative TEC above a critical defect density of around 9% (irrespective of the temperature). With interstitial defects, it exhibits a positive TEC (regardless of the defect density), and with Frenkel pair defects it shows a transition from positive TEC to negative TEC for a defect density greater than 8%. The coupling between temperature-induced expansion and defect-introduced stress in the lattice forms the mechanistic basis for the observed variation in TEC. Furthermore, the specific heat decreases rapidly with an increase in defect density at room temperature, with the highest sensitivity of the lattice observed for the Frenkel pair defects followed by interstitial defects and then by vacancy defects. These findings highlight the critical implications of defects on thermal expansion behavior of 4H-SiC with applications in radiation environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data can be made available upon request from the corresponding author.

References

  1. Y. Song, N. Shi, S. Deng, X. Xing, J. Chen, Negative thermal expansion in magnetic materials. Prog. Mater Sci. 121, 100835 (2021)

    Article  Google Scholar 

  2. J.P. Attfield, Mechanisms and materials for nte. Front. Chem. 6, 371 (2018)

    Article  ADS  Google Scholar 

  3. C. Lind, Two decades of negative thermal expansion research: Where do we stand? Materials 5(6), 1125–1154 (2012). https://doi.org/10.3390/ma5061125

    Article  ADS  Google Scholar 

  4. F. Roccaforte, P. Fiorenza, G. Greco, R.L. Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (sic and gan) technology for power devices. Microelectron. Eng. 187, 66–77 (2018)

    Article  Google Scholar 

  5. J.M. Lauenstein, Wide-Bandgap Semiconductors in Space: Appreciating the Benefits but Understanding the Risks, in Conference on Radiation Effects on Components and Systems (RADECS 2018) , 2018-561-NEPP (2018)

  6. M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48(2), 249–257 (2001)

    Article  Google Scholar 

  7. C.A. Grome, W. Ji, A brief review of single-event burnout failure mechanisms and design tolerances of silicon carbide power mosfets. Electronics 13, 8 (2024). https://doi.org/10.3390/electronics13081414

    Article  Google Scholar 

  8. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications (John Wiley & Sons, New York, 2014)

    Book  Google Scholar 

  9. C. Leroy, P.G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70(4), 493 (2007)

    Article  ADS  Google Scholar 

  10. A.J. Boutte, D.J. Cochran, D. Chen, M.J. Campola, J.A. Pellish, R.L. Ladbury, E.P. Wilcox, J.M. Lauenstein, R.A. Gigliuto, K.A. LaBel, et al., Compendium of recent total ionizing dose and displacement damage for candidate spacecraft electronics for NASA, in 2013 IEEE Radiation Effects Data Workshop (REDW) IEEE, (2013), pp. 1–9

  11. J. Srour, C.J. Marshall, P.W. Marshall, Review of displacement damage effects in silicon devices. IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003)

    Article  ADS  Google Scholar 

  12. Y. Chen, H. Liu, T. Gao, H. Wei, Simulation of the irradiation cascade effect of 6h-sic based on molecular dynamics principles. Micromachines 14(2), 455 (2023)

    Article  Google Scholar 

  13. E. Aradi, J. Lewis-Fell, G. Greaves, S. Donnelly, J. Hinks, Low-temperature investigations of ion-induced amorphisation in silicon carbide nanowhiskers under helium irradiation. Applied Surface Science 501, 143969 (2020) https://doi.org/10.1016/j.apsusc.2019.143969. https://www.sciencedirect.com/science/article/pii/S0169433219327850

  14. T. Koyanagi, M. Lance, Y. Katoh, Quantification of irradiation defects in beta-silicon carbide using raman spectroscopy. Scripta Mater. 125, 58–62 (2016)

    Article  Google Scholar 

  15. P. Hazdra, S. Popelka, Displacement damage and total ionisation dose effects on 4h-sic power devices. IET Power Electron. 12(15), 3910–3918 (2019)

    Article  Google Scholar 

  16. K. Baumann, Robert (Kruckmeyer, Radiation Handbook for Electronics (Texas Instruments, 2020)

  17. J. Howard, Spacecraft environments interactions: Space radiation and its effects on electronic systems NASA, (1999)

  18. C.C. Foster, Total ionizing dose and displacement-damage effects in microelectronics. MRS Bull. 28(2), 136–140 (2003)

    Article  ADS  Google Scholar 

  19. G.P. Summers, E. Burke, C. Dale, E. Wolicki, P. Marshall, M. Gehlhausen, Correlation of particle-induced displacement damage in silicon. IEEE Trans. Nucl. Sci. 34(6), 1133–1139 (1987)

    Article  ADS  Google Scholar 

  20. Z.M. Hossain, F. Elahi, Z. Zhang, Differential anharmonicity and thermal expansion coefficient in 3 c-sic nanowires. Phys. Rev. B 99(11), 115407 (2019)

    Article  ADS  Google Scholar 

  21. F. Elahi, Z.M. Hossain, Molecular dynamics study of interfacial strength and debonding in sic/sic nanocomposite. MRS Adv. 7(22), 462–467 (2022)

    Article  ADS  Google Scholar 

  22. Y. Li, H. Chen, Y. Chen, Y. Wang, L. Shao, W. Xiao, Point defect effects on tensile strength of \(\alpha\)- zirconium studied by molecular dynamics simulations. Nucl. Mater. Energy 20, 100683 (2019)

    Article  Google Scholar 

  23. J.W. Jiang, Z. Qi, H.S. Park, T. Rabczuk, Elastic bending modulus of single-layer molybdenum disulfide (mos2): finite thickness effect. Nanotechnology 24(43), 435705 (2013)

    Article  Google Scholar 

  24. C.A. Grome, Displacement damage effects on thermalmechanical properties of 4H-SIC University of Delaware, (2023)

  25. J.W. Jiang, Phonon bandgap engineering of strained monolayer mos 2. Nanoscale 6(14), 8326–8333 (2014)

    Article  ADS  Google Scholar 

  26. S. Li, K.M. Taddei, X. Wang, H. Wu, J. Neuefeind, D. Zackaria, X. Liu, C. Dela Cruz, B. Lv, Thermal expansion coefficients of high thermal conducting bas and bp materials. Appl. Phys. Lett. 115, 1 (2019)

    Google Scholar 

  27. A.M. Drews, Control of thermal expansion coefficient of a metal powder composite via ceramic nanofiber reinforcement. Ph.D. thesis, University of Akron (2009)

  28. E. Arriola, N.R.E. Lim, R.L. Moran, J.P. Mercado, R. Dimagiba, J. Gonzaga, A. Ubando, Evaluation of the Effects of Introducing Channels to Composite Materials to Reduce Warpage on Semiconductor Packages Due to Coefficient of Thermal Expansion Mismatch, in 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) IEEE, (2019), pp. 1–5

  29. E.M. Carnicom, W. Xie, Z. Yang, K. Górnicka, T. Kong, T. Klimczuk, R.J. Cava, Importance of specific heat characterization when reporting new superconductors: An example of superconductivity in liga2rh. Chem. Mater. 31(6), 2164–2173 (2019)

    Article  Google Scholar 

  30. J.A. McPherson, Modeling and improving Single-Event burnout performance from heavy ion bombardment in high-voltage 4H-SiC power devices (Rensselaer Polytechnic Institute, Berlin, 2021)

    Google Scholar 

  31. J.A. McPherson, P.J. Kowal, G.K. Pandey, T.P. Chow, W. Ji, A.A. Woodworth, Heavy ion transport modeling for single-event burnout in sic-based power devices. IEEE Trans. Nucl. Sci. 66(1), 474–481 (2018)

    Article  ADS  Google Scholar 

  32. J.A. McPherson, C.W. Hitchcock, T.P. Chow, W. Ji, A.A. Woodworth, Ion-induced mesoplasma formation and thermal destruction in 4h-sic power mosfet devices. IEEE Trans. Nucl. Sci. 68(5), 651–658 (2021)

    Article  ADS  Google Scholar 

  33. J.P. Crocombette, L. Proville, Thermal conductivity degradation induced by point defects in irradiated silicon carbide. Appl. Phys. Lett. 98, 19 (2011)

    Article  Google Scholar 

  34. A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Ayalew, Sic semiconductor devices technology, modeling and simulation. Ph.D. thesis (2004)

  36. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe John Wiley & Sons, (2001)

  37. C.H. Chen, Y. Zhang, Y. Wang, M. Crespillo, C. Fontana, J. Graham, G. Duscher, S. Shannon, W. Weber, Dose dependence of helium bubble formation in nano-engineered sic at 700 °C. Journal of Nuclear Materials 472, 153–160 (2016) https://doi.org/10.1016/j.jnucmat.2016.01.029. https://www.sciencedirect.com/science/article/pii/S0022311516300277

  38. R. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L. Snead, W. Weber, Promise and challenges of sicf/sic composites for fusion energy applications. Journal of Nuclear Materials 307–311, 1057–1072 (2002). https://doi.org/10.1016/S0022-3115(02)00976-5. https://www.sciencedirect.com/science/article/pii/S0022311502009765

  39. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. In’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen et al., Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Article  Google Scholar 

  40. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727 (1992)

    Article  ADS  Google Scholar 

  41. C. Jiang, D. Morgan, I. Szlufarska, Carbon tri-interstitial defect: A model for the d ii center. Phys. Rev. B 86(14), 144118 (2012)

    Article  ADS  Google Scholar 

  42. P. Erhart, K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71(3), 035211 (2005)

    Article  ADS  Google Scholar 

  43. M. Nakabayashi, T. Fujimoto, M. Katsuno, N. Ohtani, Precise determination of thermal expansion coefficients observed in 4H-SiC single crystals, in Materials science forum, vol. 527 Trans Tech Publ, pp. 699–702 (2006)

  44. Y. Touloukian, T. Makita, Thermo-physical properties of matter. the trpc data series, volume 6: Specific heat, non-metallic liquids and gases. IFI/Plenum, New York p. 293 (1970)

  45. Sandia National Laboratories, LAMMPS Users Manual. Sandia National Laboratories, Albuquerque, NM, USA (2003). Available at https://www.smcm.iqfr.csic.es/docs/lammps/Manual.pdf

  46. K.H. Kang, T. Eun, M.C. Jun, B.J. Lee, Governing factors for the formation of 4h or 6h-sic polytype during sic crystal growth: An atomistic computational approach. J. Cryst. Growth 389, 120–133 (2014)

    Article  ADS  Google Scholar 

  47. B.J. Lee, M. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64(18), 184102 (2001)

    Article  ADS  Google Scholar 

  48. M. White, J.B. Bernstein, Microelectronics reliability: physics-of-failure based modeling and lifetime evaluation. Jet Propulsion Laboratory Publication (2008)

  49. S.I. Rahman, A. Moghassemi, A. Arsalan, L. Timilsina, P.K. Chamarthi, B. Papari, G. Ozkan, C.S. Edrington, Emerging trends and challenges in thermal management of power electronic converters: A state of the art review. IEEE Access (2024)

  50. Y.F. Ding, Y. Zhang, F.W. Zhang, D.H. Zhang, Z.P. Li, Molecular dynamics study of the structure in vitreous silica with compass force field at elevated temperatures, in Materials Science Forum, vol. 546 Trans Tech Publ, pp. 2189–2193 (2007)

  51. M.T. Dove, H. Fang, Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 79(6), 066503 (2016). https://doi.org/10.1088/0034-4885/79/6/066503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and conception of this study. The following are contribution designations. Investigation: Christopher A. Grome; data curation: Christopher A. Grome; tool kit creation: Christopher A. Grome; validation: Christopher A. Grome and Zubaer Hossain; formal analysis: Christopher A. Grome and Zubaer Hossain; writing original draft preparation: Christopher A. Grome; writing review editing: Christopher A. Grome and Zubaer Hossain; visualization: Zubaer Hossain; supervision: Zubaer Hossain; conceptualization: Zubaer Hossain and Christopher A. Grome; methodology: Zubaer Hossain; resources: Zubaer Hossain. All authors have read and approved the final version of this manuscript.

Corresponding author

Correspondence to Christopher A. Grome.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grome, C.A., Hossain, Z. Negative thermal expansion coefficient and amorphization in defective 4H-SiC. Appl. Phys. A 130, 750 (2024). https://doi.org/10.1007/s00339-024-07809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07809-9

Keywords

Navigation