Skip to main content
Log in

Evolution of the supercooled liquid region and STZ in laser assisted scratching Cu50Zr50 amorphous alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amorphous alloys possess increased mechanical strength. Currently, the processing and shaping of amorphous alloys employ their superplasticity in the supercooled liquid phase, which has pushed research into the evolution behavior of the supercooled liquid area during the processing of amorphous alloys. In this study, a molecular dynamics technique was applied to analyze the development rules of the supercooled liquid area and the “shear transformation zone” during laser-assisted scratching of Cu50Zr50 amorphous alloy. It was discovered through research on temperature fluctuations that laser irradiation raises the temperature of the processing region, and the formation of the supercooled liquid region moves the characteristic point of material removal to an earlier stage. As the local temperature rises, the distribution of the supercooled liquid region changes from dispersed to an angle of about 30° with regard to the scratching direction, and the angle subsequently decreases. The variable laws of the “shear transformation zone” during the scratching process were explored based on the von Mises strain theory. The findings demonstrate that when laser energy rises, the Newtonian layer warms up and the “shear transformation zone” distribution angle gradually decreases. At 20 eV/ps, the angle between the “shear transformation zone” and the scratching direction achieves its smallest value of 33°, resulting in the largest overlap with the supercooled liquid region and the lowest content of the “shear transformation zone”. By constructing a mathematical model for material removal efficiency, it was established that energy in the range of 20 eV/ps to 30 eV/ps demonstrates higher removal efficiency and a steady processing process while reducing surface roughness by 6-7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. M. Bakkal, A.J. Shih, R.O. Scattergood, C.T. Liu, Machining of a Zr-Ti-Al-Cu-Ni metallic glass. Scripta Mater. 50, 583–588 (2004)

    Article  Google Scholar 

  2. M. Bakkal, A.J. Shih, R.O. Scattergood, Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass. Int. J. Mach. Tool. Manufact. 44, 915–925 (2004)

    Article  Google Scholar 

  3. M. Bakkal, C.T. Liu, T.R. Watkins, R.O. Scattergood, A.J. Shih, Oxidation and crystallization of Zr-based bulk metallic glass due to machining. Intermetallics. 12, 195–204 (2004)

    Article  Google Scholar 

  4. Y.H. Shi, Analysis and Modeling of Titanium Alloy Cutting Process under Laser heating-assisted Conditions (Nanjing University of Aeronautics and Astronautics, 2014)

  5. D. Y. Sheng Temperature Field Simulation and Cutting test Study of Laser heating-assisted Turning of 45% Sicp/Al, Harbin Institute of Technology, 2015

  6. L.H. Wang, Numerical study on laser heating-assisted turning of titanium alloy ti6al4v. Mech. Eng. Autom., 2017, (01): 34–36

  7. A. Zhang Yingxin, Libao, Research progress of laser heating-assisted cutting and machining technology. J. Aerosp. Mater. 38(02), 77–85 (2018)

    Google Scholar 

  8. S. Xu, S. Osawa, Minimizing burrs and defects on microstructures with laser assisted micromachining technology. Int. J. Autom. Technol. 10(6), 891–898 (2016)

    Article  Google Scholar 

  9. Y. Ye, Fei Numerical simulation study of steel/aluminum laser heating-assisted stir friction welding. Appl. Laser. 38(04), 601–609 (2018)

    Google Scholar 

  10. D. Roy et al., Microstructural evolution and mechanical properties of nanointermetallic phase dispersed Al 65 Cu 20 Ti 15 amorphous matrix composite synthesized by mechanical alloying and hot isostatic pressing. Metall. Mater. Trans. A 42, 2498–2508 (2011)

    Article  Google Scholar 

  11. D. Roy et al., Microstructure and mechanical properties of mechanically alloyed and spark plasma sintered amorphous–nanocrystalline Al65Cu20Ti15 intermetallic matrix composite reinforced with TiO2 nanoparticles. Intermetallics. 15(12), 1595–1605 (2007)

    Article  Google Scholar 

  12. I. Manna et al., Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al–Ti–Si composites prepared by mechanical alloying. Acta Mater. 52(14), 4133–4142 (2004)

    Article  ADS  Google Scholar 

  13. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25(4), 407–415 (1977)

    Article  Google Scholar 

  14. A. Argon, Plastic deformation in metallic glasses. Acta Met. 27, 47–58 (1979)

    Article  Google Scholar 

  15. C. Maloney, A. Lemaître, Subextensive Scaling in the Athermal, Quasistatic Limit of Amorphous Matter in Plastic Shear Flow. Phys. Rev. Lett. 93, 11681–11698 (2004)

    Article  Google Scholar 

  16. A.L. Greer, Y.Q. Cheng, E. Ma, Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74(4), 71–132 (2013)

    Article  Google Scholar 

  17. W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95(4), 016001 (2005)

    Google Scholar 

  18. S. Takeuchi, K. Edagawa, Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog Mater. Sci. 56(6), 785–816 (2011)

    Article  Google Scholar 

  19. M.L. Falk, J.S. Langer, Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E. 57, 7192–7205 (1998)

    Article  ADS  Google Scholar 

  20. J. Li, C. Li, S. Wang, H. Wang, S. Kou, Thermal processing map and thermoplastic forming map of Zr-based bulk metallic glass in the supercooled liquid region. J. Non-Cryst Solids. 570, 121008 (2021)

    Article  Google Scholar 

  21. Y. Fan, T. Iwashita, T. Egami, How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014)

    Article  ADS  Google Scholar 

  22. F. Yue, I. Takuya, E. Takeshi, Crossover from localized to Cascade relaxations in metallic glasses. Phys. Rev. Lett. 115(4), 045501 (2015)

    Article  Google Scholar 

  23. L.Y. Li, J. Cui, J. Wang, H.C. Kou, J.S. Li, Deformation behavior of a Ti-based bulk metallic glass composite in the supercooled liquid region. Mater. Des. 90, 595–600 (2016)

    Article  Google Scholar 

  24. K. Yang, X. Fan, B. Li, Y. Li, X. Wang, Optimisation of superplastic processing parameters for a TiZrHfBeCuNi high entropy bulk metallic glass in the supercooled liquid region. J. Mater. Res. Technol. 24, 1911–1921 (2022)

    Article  Google Scholar 

  25. D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental scratching of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Natl. Acad. Sci. U.S.A. 105(39) (2008) 14769–14772

  26. P. Murali, T.F. Guo, Y.W. Zhang, R. Narasimhan, Y. Li, H.J. Gao, Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys. Rev. Lett. 107, 215501 (2011)

    Article  ADS  Google Scholar 

  27. M. Imran, F. Hussain, M. Rashid, Y.Q. Cai, S.A. Ahmad, Mechanical behavior of Cu–Zr bulk metallic glasses (BMGs): a molecular dynamics approach. Chin. Phys. B 22(9), 096101 (2013)

    Article  Google Scholar 

  28. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos. Mag. 89, 967–987 (2009)

    Article  ADS  Google Scholar 

  29. Y. Chiu, J. Shen et al., Mechanical performance of metallic glasses during nanoscratch tests[J]. Intermetallics. 18(5), 1056–1061 (2010)

    Article  Google Scholar 

  30. F. Ding, C. Wang, Z. Lai et al., Freezing cutting characteristics and non-crystallized processing technology of Zr-based bulk metallic glass[J]. J. Mech. Eng. 57(3), 235–246 (2021)

    Article  Google Scholar 

  31. D.L. Cheung, L. Anton, M.P. Allen et al., Computer simulation of liquids and liquid crystals[J]. Comput. Phys. Commun. 179(1–3), 61–65 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Qiu, P. Zhu, F. Fang et al., Study of nanoindentation behavior of amorphous alloy using molecular dynamics[J]. Appl. Surf. Sci. 305, 101–110 (2014)

    Article  ADS  Google Scholar 

  33. Z. Zhu, C. Qiu, Z. Fang et al., Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy[J]. Appl. Surf. Sci. 317, 432–442 (2014)

    Article  ADS  Google Scholar 

  34. M.P. Allen, D.J. Tildesley, J.R. Banavar, Computer Simulation of liquids. Phys. Today. 42(3), 105–106 (1989)

    Article  Google Scholar 

  35. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses[J]. J. Appl. Phys. 102(4), 043501 (2007)

    Article  ADS  Google Scholar 

  36. K. Sedeek, A. Adam et al., Structural correlations in light irradiated Ge36Se64 amorphous films—radial distribution function study. Mater. Res. Bull. 43(6), 1355–1362 (2008)

    Article  Google Scholar 

  37. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. 14, 783–802 (2002)

    Google Scholar 

  38. K. Fujita, Y. Morishita, N. Nishiyama, H. Kimura, A. Inoue, Cut. Characteristics Bulk. Metallic Glass Mater. Trans. 46(12), 2856–2863 (2005)

    Google Scholar 

  39. H.G. Jiang, J. Baram, Estimation of the glass transition temperature in metallic glasses. Mater. Sci. Eng. A 208, 232–238 (1996)

    Article  Google Scholar 

  40. P. Yu, H.Y. Bai, W.H. Wang, Superior glass-forming ability of CuZr alloys fromminor additions. J. Mater. Res. 21(7), 7 (2006)

    Article  Google Scholar 

  41. W.H. Wang, Y.X. Zhuang, M.X. Pan, Y.S. Yao, Behavior glass transition crystallization kinetic and microstructure change of ZrTiCuNiBe BMG under high pressure. J. Appl. Phys. 88, 3914 (2000)

    Article  ADS  Google Scholar 

  42. D.Z. Sha, S.X. Qu, Z.S. Liu et al., Cycl. Deformation Metallic Glasses Nano Lett. 15(10), 7010–7015 (2015)

    Google Scholar 

  43. Z. Sha, W. Wong, Q. Pei et al., Atomistic origin of size effects in fatigue behavior of metallic glasses[J]. J. Mech. Phys. Solids. 104, 84–95 (2017)

    Article  ADS  Google Scholar 

  44. J. Luo, K. Dahmen, P.K. Liaw et al., Low-cycle fatigue of metallic glass nanowires. Acta Mater. 87, 225–232 (2015)

    Article  Google Scholar 

  45. B. Deng, Y. Shi, On measuring the fracture energy of model metallic glasses. J. Appl. Phys. 124(3), 035101 (2018)

    Article  ADS  Google Scholar 

  46. W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. andEngineering R. 44, 45–89 (2004)

    Article  Google Scholar 

  47. D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental scratching of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. U.S.A. 105 (2008): 14769–14772

  48. M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Plastic deformation of metallic glasses: size of shear transformation zones from molecular dynamics simulations. Phys. Rev. B 73, 172203 (2006)

    Article  ADS  Google Scholar 

  49. M. Schwabe, S. Küchemann, H. Wagner, D. Bedorf, K. Samwer, Activation volume of microscopic processes in amorphous Pd77.5Cu6.0Si16.5 due to stress and temperature. J. Non-Cryst Solids. 357, 490 (2011)

    Article  ADS  Google Scholar 

  50. L. Greer, Y.Q. Cheng, E. Ma, Shear bands in metallic glasses. Mater. Sci. Eng. R. 74, 71–132 (2013)

    Article  Google Scholar 

  51. P. Yu, H.Y. Bai, Poisson’s ratio and plasticity in CuZrAl bulk metallic glasses. Mater. Sci. Eng., a 485, 1–4 (2008)

    Article  Google Scholar 

  52. B. Yang, C.T. Liu, T.G. Nieh, Unified equation for the strength of bulk metallic glasses. Appl. Phys. Lett. 88, 221911 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (Grant No. 52101197), the Shenyang Young and middleaged Talents Project (Grant No. RC210439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Kong.

Ethics declarations

Disclimer

I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Cheng, Z., Wang, W. et al. Evolution of the supercooled liquid region and STZ in laser assisted scratching Cu50Zr50 amorphous alloy. Appl. Phys. A 130, 395 (2024). https://doi.org/10.1007/s00339-024-07576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07576-7

Keywords

Navigation