Skip to main content
Log in

The influence of cadmium on the photovoltaic performance of CoOx-based MAPbI3 solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perovskite-based solar cells have earned significant interest for more than a decade because of the distinctive properties they possess. Charge transport layers (CTL) play a critical role in the operation of perovskite solar cells. Consequently, selecting an appropriate and cheap CTL is paramount of importance. Though cobalt oxide shows great potential as a hole-injecting layer (HIL) for inverted PSCs, CoOx still needs to fulfill solar cell performance criteria. In this work, the PV operation of sol-gel-based MAPbI3 PSCs has been shown to be enhanced by the incorporation of Cd to CoOx precursor. Further, doped film contributed to reducing the trap density of perovskite film. Thus, it is essential to determine the trap states that occur through the development of perovskites in order to get superb and prolonged performance. Cd-doped CoOx film showed an enhancement in electrical conductivity and hole mobility in comparison with pure CoOx which consequently, resulted in an enhancement of %22 PCE and better stability as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.J. Eden, Energy Policy. 21, 231 (1993)

    Article  Google Scholar 

  2. J. George, V.V. Halali, C.G. Sanjayan, V. Suvina, M. Sakar, R.G. Balakrishna, Inorg. Chem. Front. 7, 2702 (2020)

    Article  Google Scholar 

  3. M. Maulidiyah, Z. Muhammad, M.N. Muzakkar, · Muhammad Nurdin, L. Mahmudi, M.Z. Ode, N. Mulkiyan, J. Sadikin, A. Ridwan, Salim, Akrajas, A. Umar, Appl. Phys. A 130, 259 (123AD)

  4. Q. Yin, F. Zhang, Y. Teng, C. Peng, C. Wang, Y. Jin, M. Xu, T. Xu, Appl. Phys. Mater. Sci. Process. 129, 1 (2023)

    Article  ADS  Google Scholar 

  5. P.N. Tran, H.H. Phan, T.N. Luu, Q.H. Tran, T.T. Duong, Appl. Phys. Mater. Sci. Process. 130, 1 (2024)

    Article  ADS  Google Scholar 

  6. E.E. Ateia, M.M. Arman, M. Morsy, Appl. Phys. Mater. Sci. Process. 125, 1 (2019)

    Article  ADS  Google Scholar 

  7. V. Vasylkovskyi, I. Bespalova, O. Gryshkov, M. Slipchenko, S. Tkachenko, P. Arhipov, I. Gerasymov, Y. Zholudov, Z. Zhao, A. Feldhoff, A. Sorokin, O. Slipchenko, B. Grynyov, B. Chichkov, Appl. Phys. Mater. Sci. Process. 129, 1 (2023)

    Article  Google Scholar 

  8. M. Geng, X. Pan, J. Zhao, X. Wang, R. Liu, Z. Xu, N. Ma, M. Gao, M. Shao, J. Li, Chem. Eng. J. 486, 150222 (2024)

    Article  Google Scholar 

  9. Z. Jiang, F. Li, H. Yan, R. Kannan, L. Chen, P. Li, Q. Song, Green. Chem. (2024)

  10. F. Schmitz, N. Lago, L. Fagiolari, J. Burkhart, A. Cester, A. Polo, M. Prato, G. Meneghesso, S. Gross, F. Bella, F. Lamberti, T. Gatti, ChemSusChem 15, e202201590 (2022)

  11. K. A, T. K, S Y M T J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  12. J.J. Yoo, G. Seo, M.R. Chua, T. Gwan Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. Su Moon, N. Joong Jeon, J.-P. Correa-Baena, V. Bulović, S. Sik, M.G. Shin, Bawendi, J. Seo, Nature 590, (2021)

  13. Z. Song, C.L. McElvany, A.B. Phillips, I. Celik, P.W. Krantz, S.C. Watthage, G.K. Liyanage, D. Apul, M.J. Heben, Energy Environ. Sci. 10, 1297 (2017)

    Article  Google Scholar 

  14. P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014)

    Article  Google Scholar 

  15. Z. Hu, Z. Lin, J. Su, J. Zhang, J. Chang, Y. Hao, Sol RRL. 3, 1900304 (2019)

    Article  Google Scholar 

  16. L.M. Herz, ACS Energy Lett. 2, 1539 (2017)

    Article  Google Scholar 

  17. J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, J. Phys. Chem. Lett. 9, 3093 (2018)

    Article  Google Scholar 

  18. P. Umari, E. Mosconi, F. De Angelis, J. Phys. Chem. Lett. 9, 620 (2018)

    Article  Google Scholar 

  19. T.F. Yadeta, K.W. Huang, T. Imae, Y.L. Tung, Nanomater. 2023, Vol. 13, Page 186 13, 186 (2022)

  20. J. Qin, Z. Zhang, W. Shi, Y. Liu, H. Gao, Y. Mao, Nanoscale Res. Lett. 12, 1 (2017)

    Article  Google Scholar 

  21. Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Y. Zhong, C. Li, S. Huettner, M. Hufnagel, M. Thelakkat, Adv. Funct. Mater. 30, 1908920 (2020)

    Article  Google Scholar 

  22. L.M. Campos, A.J. Mozer, S. Günes, C. Winder, H. Neugebauer, N.S. Sariciftci, B.C. Thompson, B.D. Reeves, C.R.G. Grenier, J.R. Reynolds, Sol Energy Mater. Sol Cells. 90, 3531 (2006)

    Article  Google Scholar 

  23. F.P. Gokdemir Choi, H. Moeini Alishah, S. Gunes, Appl. Surf. Sci. 563, 150249 (2021)

    Article  Google Scholar 

  24. Y. Qi, M. Almtiri, H. Giri, S. Jha, G. Ma, A.K. Shaik, Q. Zhang, N. Pradhan, X. Gu, N.I. Hammer, D. Patton, C. Scott, Q. Dai, Adv. Energy Mater. 12, 2202713 (2022)

    Article  Google Scholar 

  25. H.M. Alishah, F.P.G. Choi, F. Kuruoglu, A. Erol, S. Gunes, Electrochim. Acta. 388, 138658 (2021)

    Article  Google Scholar 

  26. S. Günes, A. Wild, E. Cevik, A. Pivrikas, U.S. Schubert, D.A.M. Egbe, Sol Energy Mater. Sol Cells. 94, 484 (2010)

    Article  Google Scholar 

  27. H.M. Alishah, F.P.G. Choi, S. Gunes, J. Mater. Sci. Mater. Electron. 32, 21450 (2021)

    Article  Google Scholar 

  28. V.E. Madhavan, I. Zimmermann, A.A.B. Baloch, A. Manekkathodi, A. Belaidi, N. Tabet, M.K. Nazeeruddin, ACS Appl. Energy Mater. 3, 114 (2020)

    Article  Google Scholar 

  29. H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt, L. Sun, J. Mater. Chem. A 6, 21435 (2018)

    Article  Google Scholar 

  30. F.P. Gokdemir Choi, H. Moeini Alishah, S. Bozar, C. Kahveci, M. Canturk, Rodop, S. Gunes, Sol Energy. 215, 434 (2021)

    Article  ADS  Google Scholar 

  31. L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo, A. Agresti, R. Oropesa-Nunìez, S. Pescetelli, L. Vesce, E. Calabrò, M. Prato, Di Carlo, F. Bonaccorso, ACS Nano. 12, 10736 (2018)

    Article  Google Scholar 

  32. U. Rosungnern, P. Kumnorkaew, N. Kayunkid, N. Chanlek, Y. Li, I.M. Tang, N. Thongprong, N. Rujisamphan, T. Supasai, ACS Appl. Energy Mater. 4, 3169 (2021)

    Article  Google Scholar 

  33. H. Peng, W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Zhou, Z. Bian, C. Huang, Nano Res. 9, 2960 (2016)

    Article  Google Scholar 

  34. J.E. Castellanos-Águila, L. Lodeiro, E. Menéndez-Proupin, A.L. Montero-Alejo, P. Palacios, J.C. Conesa, P. Wahnón, ACS Appl. Mater. Interfaces. 12, 44648 (2020)

    Article  Google Scholar 

  35. F. Igbari, M. Li, Y. Hu, Z.K. Wang, L.S. Liao, J. Mater. Chem. A 4, 1326 (2016)

    Article  Google Scholar 

  36. Z. Li, Chem. Lett. 44, 1140 (2015)

    Article  Google Scholar 

  37. R. Chiara, M. Morana, L. Malavasi, Chempluschem. 86, 879 (2021)

    Article  Google Scholar 

  38. F.P. Gökdemir Choi, J. Mater. Sci. Mater. Electron. 32, 8136 (2021)

    Article  Google Scholar 

  39. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  40. A. Huang, L. Lei, Y. Yu, Y. Liu, S. Yang, S. Bao, X. Cao, P. Jin, Nanotechnology. 28, 20LT02 (2017)

    Article  Google Scholar 

  41. C.-H. Chiang, C.-C. Chen, M.K. Nazeeruddin, C.-G. Wu, (2018)

  42. W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C.C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P.M. Ajayan, M.G. Kanatzidis, J. Even, A.D. Mohite, W. Nie, H. Tsai, J. Blancon, F. Liu, A.D. Mohite, P.M. Ajayan, C.C. Stoumpos, M.G. Kanatzidis, B. Traore, M. Kepenekian, C. Katan, O. Durand, J. Even, S. Tretiak, J. Crochet, Adv. Mater. 30, 1703879 (2018)

    Article  Google Scholar 

  43. X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, B. Cao, ACS Appl. Energy Mater. 1, 3947 (2018)

    Article  Google Scholar 

  44. M.I. Shahar Bano, H. Khan, G.U. Albalawi, M. Islam, T. Siddique, H. Ahmad, L. Alkhaldi, R. Ben Farhat, Ahson, S. Hussain, J. Mater. Res. Technol. 19, 1982 (2022)

    Article  Google Scholar 

  45. H.M. Alishah, F.P.G. Choi, U.D. Menda, C. Kahveci, M.C. Rodop, M.J. Mendes, S. Gunes, J. Mex Chem. Soc. 65, 149 (2021)

    Google Scholar 

  46. C. Doyranli, F.P. Gokdemir Choi, H. Moeini Alishah, S. Koyuncu, S. Gunes, N. San, Org. Electron. 108, 106595 (2022)

    Article  Google Scholar 

  47. M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, S.-X. Wu, Opt. Express. 24, A1349 (2016)

    Article  Google Scholar 

  48. W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan, Z.B. He, Adv. Energy Mater. 7, (2017)

  49. J.H. Lee, Y.W. Noh, I.S. Jin, S.H. Park, J.W. Jung, J. Power Sources. 412, 425 (2019)

    Article  ADS  Google Scholar 

  50. X. Chen, L. Xu, C. Chen, Y. Wu, W. Bi, Z. Song, X. Zhuang, S. Yang, S. Zhu, H. Song, J. Power Sources 444, (2019)

  51. M. Park, J.Y. Kim, H.J. Son, C.H. Lee, S.S. Jang, M.J. Ko, Nano Energy. 26, 208 (2016)

    Article  Google Scholar 

  52. Y. Wu, Z. Wang, M. Liang, H. Cheng, M. Li, L. Liu, B. Wang, J. Wu, R. Prasad Ghimire, X. Wang, Z. Sun, S. Xue, Q. Qiao, ACS Appl. Mater. Interfaces. 10, 17883 (2018)

    Article  Google Scholar 

  53. Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, Matter. 4, 1683 (2021)

    Article  Google Scholar 

  54. M. Yin, F. Xie, H. Chen, X. Yang, F. Ye, E. Bi, Y. Wu, M. Cai, L. Han, J. Mater. Chem. A 4, 8548 (2016)

    Article  Google Scholar 

  55. D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Nano Lett. 15, 5191 (2015)

    Article  ADS  Google Scholar 

  56. H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Nat. Commun. 4, (2013)

  57. L. Cojocaru, S. Uchida, P.V.V. Jayaweera, H. Kaneko, J. Nakazaki, T. Kubo, H. Segawa, Chem. Lett. 44, 1750 (2015)

    Article  Google Scholar 

  58. X. Zhao, C. Yao, T. Liu, J.C. Hamill, G.O. Ngongang Ndjawa, G. Cheng, N. Yao, H. Meng, Y.L. Loo, Adv. Mater. 31, 1904494 (2019)

    Article  Google Scholar 

  59. J.H. Heo, M.S. You, M.H. Chang, W. Yin, T.K. Ahn, S.J. Lee, S.J. Sung, D.H. Kim, S.H. Im, Nano Energy. 15, 530 (2015)

    Article  Google Scholar 

  60. W. Zhu, L. Kang, T. Yu, B. Lv, Y. Wang, X. Chen, X. Wang, Y. Zhou, Z. Zou, ACS Appl. Mater. Interfaces. 9, 6104 (2017)

    Article  Google Scholar 

  61. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031 (1965)

    Article  ADS  Google Scholar 

  62. S.R.S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sources. 161, 730 (2006)

    Article  ADS  Google Scholar 

  63. D. Antiohos, G. Folkes, P. Sherrell, S. Ashraf, G.G. Wallace, P. Aitchison, A.T. Harris, J. Chen, A.I. Minett, J. Mater. Chem. 21, 15987 (2011)

    Article  Google Scholar 

  64. Y. Wu, Y. Yang, C. Li, Y. Li, W. Chen, Front. Bioeng. Biotechnol. 8, 1 (2020)

    Article  Google Scholar 

  65. X.X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Züttel, Y. Feng, M.K. Nazeeruddin, Adv. Mater. 32, 1 (2020)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Prof. Serap Güneş and Assoc. Prof. Fatma Pınar Gökdemir Choi for their support. The author would like to thank Yildiz Technical University. No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception, design, material preparation, data collection, and analysis. The first draft of the manuscript and the final one were written and approved by Hamed Moeini Alishah.

Corresponding author

Correspondence to Hamed Moeini Alishah.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishah, H.M. The influence of cadmium on the photovoltaic performance of CoOx-based MAPbI3 solar cells. Appl. Phys. A 130, 420 (2024). https://doi.org/10.1007/s00339-024-07573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07573-w

Keywords

Navigation