Skip to main content
Log in

Investigation effect of Cr3+ substituted on enhanced dielectric and magnetic properties of co-cu nano ferrites for high-density data storage applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nano-ferrite materials with chemical compositions Co0.3Cu0.7Fe2−xCrxO4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) were synthesized through the wet chemical method, and analytical characterizations of their structural, magnetic, and dielectric properties were conducted. The structural formation was confirmed through powder X-ray (XRD) measurements, further affirmed by Fourier transform infrared spectroscopy (FTIR). Microstructural and morphological properties were investigated using FESEM and HRTEM scanning, revealing grains in the nano-scale range. Room temperature vibrating sample magnetometer (VSM) analysis provided magnetic information on the materials, presenting various values of magnetic parameters. Importantly, dielectric properties were examined using an LCR meter, revealing the dielectric nature of the synthesized materials and showing variations in dielectric parameters corresponding to changes in the dopant concentration. These prepared ferrite qualities suggest they could be used in high-density data storage systems, memory, and magnetic recording devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The corresponding authors’ data supporting this study’s findings are available upon reasonable request.

References

  1. T.B. Taha, A.A. Barzinjy, Faiq Hama Seaeed Hussain, Togzhan Nurtayeva, Nanotechnology and Computer Science: Trends and advances. Memories - Mater. Devices Circuits Syst. 2, 100011 (2022). https://doi.org/10.1016/j.memori.2022.100011

    Article  Google Scholar 

  2. B. Henry, S.A. Omietimi, F. Afolalu, Joseph, I. Kayode, Stella, S.L. Monye, E. Lawal, Moses, Emetere, An overview of nanotechnology and its application, E3S Web of Conferences 391, 01079 (2023), https://doi.org/10.1051/e3sconf/202339101079

  3. J. Jinu Mathew, S.C. Joy, George, Potential applications of nanotechnology in transportation: a review. J. King Saud Univ. – Sci. 31, 586–594 (2019). https://doi.org/10.1016/j.jksus.2018.03.015

    Article  Google Scholar 

  4. S. Preeti Thakur, D. Taneja, B. Chahar, A. Ravelo, Thakur, Recent advances on synthesis, characterization and high-frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021). https://doi.org/10.1016/j.jmmm.2021.167925

    Article  Google Scholar 

  5. M.A. Abdo, A.A. El-Daly, Sm-substituted copper-cobalt ferrite nanoparticles: Preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloys Compd. 883, 160796 (2021). https://doi.org/10.1016/j.jallcom.2021.160796

    Article  Google Scholar 

  6. E. Ebtesam, F.S. Ateia, Soliman, Modification of Co/Cu nanoferrites properties via Gd3+/ Er3+doping. Appl. Phys. A 123, 312 (2017). https://doi.org/10.1007/s00339-017-0948-8

    Article  ADS  Google Scholar 

  7. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, S. Yonatan Mulushoa, M.P. Dasari, Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on co-cu nano ferrite. Inorg. Chem. Commun. 143, 109794 (2022). https://doi.org/10.1016/j.inoche.2022.109794

    Article  Google Scholar 

  8. J. Ji, Z. Zhang, B. Fang, J. Ding, Preparation of Co–Zn ferrite nano-based materials and their enhanced magnetic performance via inverse miniemulsion method, Mater. Res. Express 4 (2017) 116101,https://doi.org/10.1088/2053-1591/aa96b7

  9. M.A. Almessiere, Y. Slimani, H. Gungunes, A. Manikandan, A. Baykal, Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 13, 102166 (2019). https://doi.org/10.1016/j.rinp.2019.102166

    Article  Google Scholar 

  10. K. Chandramouli, B. Suryanarayana, P.V.S.K. Phanidhar Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Effect of Cr3+ substitution on Dc electrical resistivity and magnetic properties of Cu0.7Co0.3Fe2-xCrxO4 ferrite nanoparticles prepared by sol-gel auto combustion method. Results Phys. 24, 104117 (2021). https://doi.org/10.1016/j.rinp.2021.104117

    Article  Google Scholar 

  11. N. J.Balavijayalakshmi, V.Gopalakrishnan, Effect of concentration on dielectric properties of Co-cu ferrite nanoparticles. Phys. Procedia. 49, 49–57 (2013). https://doi.org/10.1016/j.phpro.2013.10.010

    Article  ADS  Google Scholar 

  12. B.B. Ngonidzashe Masunga, Y.W. Mamba, A. Getahun, Ahmed, K.K. El-Gendy, Kefeni, Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method. Mater. Sci. Eng., B 272, 115368 (2021). https://doi.org/10.1016/j.mseb.2021.115368

    Article  Google Scholar 

  13. M.A. Bashar, M.T.H. Molla, D. Chandra, M.D. Malitha, Md Suman Islam, Md Safiur Rahman, Md Shameem Ahsan, Hydrothermal synthesis of cobalt substitute zinc-ferrite (Co1-xZnxFe2O4) nanodot, functionalised by polyaniline with enhanced photocatalytic activity under visible light irradiation. Heliyon. 9, e15381 (2023). https://doi.org/10.1016/j.heliyon.2023.e15381

    Article  Google Scholar 

  14. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol-gel route. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  Google Scholar 

  15. E.A. Thomas Dippong, Levei, O. Cadar, Investigation of Structural, morphological and magnetic properties of MFe2O4 (M = co, Ni, Zn, Cu, Mn) obtained by Thermal decomposition. Int. J. Mol. Sci. 23, 8483 (2022). https://doi.org/10.3390/ijms23158483

    Article  Google Scholar 

  16. K. Chandramouli, P. Anantha Rao, B. Suryanarayana, V. Raghavendra, S.J. Mercy, D. Parajuli, P. Taddesse, S. Yonatan Mulushoa, Tulu Wegayehu Mammo, and, N. Murali, Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites, J Mater Sci: Mater Electron, 2021, https://doi.org/10.1007/s10854-021-06127-7

  17. M. Faiqa Barkat, B.S. Afzal, A. Khan, M. Saeed, A. Bashir, T. Mukhtar, Mehmood, K. Wu, Formation Mechanism and Lattice Parameter Investigation for Copper-Substituted Cobalt Ferrites from Zingiber officinale and Elettaria cardamom Seed Extracts Using Biogenic Route, Materials 2022, 15, 4374. https://doi.org/10.3390/ma15134374

  18. A.A. Al-Juaid, M.A. Gabal, Effects of co-substitution of Al3 + and Cr3 + on structural and magnetic properties of nano-crystalline CoFe2O4 synthesized by the sucrose technique. J. Mater. Res. Technol. 14, 10e24 (2021). https://doi.org/10.1016/j.jmrt.2021.06.023

    Article  Google Scholar 

  19. S. Talat Zeeshan, H. Anjum, R. Iqbal, Zia, Substitutional effect of copper on the cation distribution in cobalt-chromium ferrites and their structural and magnetic properties. Mater. Science-Poland. 36(2), 255–263 (2018). https://doi.org/10.1515/msp-2018-0011

    Article  ADS  Google Scholar 

  20. K. Bashir, M. -ul-Islam, M. Ajmal, M. Hussain, M. Waqas Nafees, Effect of Cr3+ substitution on magnetic and electrical properties of (Ni0.3Cu0.7)Fe2O4 spinel ferrites. Revista Mexicana De F´ısica. 66(5), 573–579 (2020). https://doi.org/10.31349/RevMexFis.66.573

    Article  Google Scholar 

  21. W. Aslam Farooq, M.S.U. Hasan, M.I. Khan, A.R. Ashraf, M.A. Qayyum, N. Yaqub, M.A. Almutairi, Muhammad Atif and Atif Hanif, Structural, Optical and Electrical Properties of Cu0.6CoxZn0.4-xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) Soft Ferrites, Molecules 2021, 26, 1399. https://doi.org/10.3390/molecules26051399

  22. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of co-ferrite materials. Phys. B: Condens. Matter. 531, 164–170 (2018). https://doi.org/10.1016/j.physb.2017.12.049

    Article  ADS  Google Scholar 

  23. K. Chandramouli, V. Raghavendra, P.V.S.K. Phanidhar Varma, B. Suryanarayana, T.W. Mammo, D. Parajuli, P. Taddesse, N. Murali, Influence of Cr3+substituted Co0.7Cu0.3Fe2xCrxO4 nano ferrite on structural, morphological, dc electrical resistivity and magnetic properties. Appl. Phys. A 127596 (2021). https://doi.org/10.1007/s00339-021-04750-z

  24. M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, M.U. Farooq, M. Irfan, S.N.F. Mursal, S. Legutko, J. Petru, M. Pagác, Enhancement of Magnetic and Dielectric Properties of Ni0.25Cu0.25Zn0.50Fe2O4 Magnetic Nanoparticles through Non-Thermal Microwave Plasma Treatment for High-Frequency and Energy Storage Applications, Materials 2022, 15, 6890, https://doi.org/10.3390/ma15196890

  25. I. El Heda, R. Dhahri, J. Massoudi, E. Dhahri, F. Bahri, K. khirouni, B.F.O. Costa, Study of the structural, electrical, dielectric properties and transport mechanisms of Cu0.5Fe2.5O4 ferrite nanoparticles for energy storage, photocatalytic and microelectronic applications. Heliyon. 9, e17403 (2023). https://doi.org/10.1016/j.heliyon.2023.e17403

    Article  Google Scholar 

  26. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, J. Jing, X. Lin, J. Mao, Zeeshan Ashfaq, Structural, magnetic and dielectric properties of nano-crystalline spinel NixCu1-xFe2O4. J. Alloys Compd. 825, 154017 (2020). https://doi.org/10.1016/j.jallcom.2020.154017

    Article  Google Scholar 

  27. T.W. Mammo, C.V. Kumari, S.J. Margarette, A. Ramakrishna, R. Vemuri, Y.B. Shankar Rao, K.L. Vijaya Prasad, Ramakrishna, N. Murali, Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Phys. B: Phys. Condens. Matter. (2019). https://doi.org/10.1016/j.physb.2019.411769

    Article  Google Scholar 

  28. T.W. Mammoa, N. Murali, Y.M. Sileshi, T. Arunamani, Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of co-ferrite materials. Phys. B: Condens. Matter. 531, 164–170 (2018). https://doi.org/10.1016/j.physb.2017.12.049

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers Supporting Project number (RSPD2024R993) at King Saud University, Riyadh, Saudi Arabia, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. B. Rupa Venkateswara Rao, P. S. V. Shanmukhi, Tulu Wegayehu Mammo, D. Kothandan, Tewodros Aregai, Tadesse Desta, Mebrahtom Kahsay, Gereziher Hagos, N. Murali, Khalid Mujasam Batoo, Ahmed Ahmed Ibrahim performed material preparation, data collection and analysis. N. Murali wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Murali.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.R.V., Shanmukhi, P.S.V., Mammo, T.W. et al. Investigation effect of Cr3+ substituted on enhanced dielectric and magnetic properties of co-cu nano ferrites for high-density data storage applications. Appl. Phys. A 130, 409 (2024). https://doi.org/10.1007/s00339-024-07569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07569-6

Keywords

Navigation