Skip to main content
Log in

Structural, optical and multiferroic properties of (1-x)BiFeO3-xNa0.5Bi0.5TiO3, x = 0.00, 0.05, 0.10 and 0.15

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The polycrystalline (1-x)BiFeO3-xNa0.5Bi0.5TiO3, x = 0.00, 0.05, 0.10 and 0.15, ceramics were prepared using conventional solid-state route. The structural studies using X-ray diffraction and Raman measurements confirmed the rhombohedral R3c structure of the compounds. The scanning electron micrographs showed that grain size decreased, and the density of the compounds increased with the higher Na0.5Bi0.5TiO3 content. The weak ferromagnetism was induced in the solid solution of antiferromagnetic BiFeO3 compound with Na0.5Bi0.5TiO3 content. The structural distortions were increased with the increase of x, which favours the increase of weak ferromagnetism in the antiferromagnetic compound. The electric polarisation measurements indicated that leakage character decreased with the increase in Na0.5Bi0.5TiO3 fraction. The temperature and frequency-dependent dielectric measurements showed that the dielectric constant was improved and loss tangent was decreased in Na0.5Bi0.5TiO3 rich compounds. The temperature dependence of dielectric constant data showed a dielectric anomaly near the magnetic transition of BiFeO3, which shifted towards the lower temperature side with the increase of x. The UV-VIS-NIR spectroscopy measurements evidenced an increase in band gap energy for higher Na0.5Bi0.5TiO3 concentration.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of the present work are available on request from the corresponding author.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature. 442, 759 (2006)

  2. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401(R) (2005)

  3. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

  4. B. Sun, Y. Liu, W. Zhao, P. Chen, RSC Adv. 5, 13513 (2015)

  5. H. Liu, X. Yang, Ferroelectrics. 507, 69 (2017)

  6. I. Sosnowska, T. Peterlinneumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

  7. M.H. Basiri, H. Shokrollahi, G. Isapour, J. Magn. Magn. Mater. 354, 184 (2014)

  8. N. Kambhala, S. Angappane, S. Thiyagaraj, H.S. Akkera, J. Supercond. Novel Magn. 36, 223 (2023)

  9. V. Dorcet, P. Marchet, G. Trolliard, J. Eur. Ceram. Soc. 27, 4371 (2007)

  10. Z. Xu, L. Luo, M. He, K. Shen, J. Du, Q. Xu, IEEE Trans. Mang, 51 (11) (2015)

  11. E. Venkata Ramana, S.V. Suryanarayana, T. Bhima, Sankaram, Solid State Sci. 12, 956 (2010)

  12. A. Hieno, W. Sakamoto, M. Moriya et al., Jpn J. Appl. Phys. 50, 09NB04 (2011)

  13. T. Durga Rao, S. Asthana, Mater. Res. Express. 4, 126305 (2017)

  14. G. Rojas-George, J. Silva, R. Castaneda et al., Mater. Chem. Phys. 146, 73 (2014)

  15. N. Kambhala, S. Angappane, H.S. Akkera, Cryst. Res. Technol. 58, 2200261 (2023)

  16. T. Karthik, T. Durga Rao, A. Srinivas, S. Asthana, J. Mater. Sci: Mater. Electron. 26, 8676 (2015)

  17. X. Xu, T. Guoqiang, R. Huijun et al., Ceram. Int. 39, 6223 (2013)

  18. A. Ali, A. Zaman, S.A.A. Aldulmani, M. Abbas, M. Mushtaq, K. Bashir, M. Amami, K. Althubeiti, ACS Omega. 7, 2331 (2022)

  19. P. Hermet, M. Goffinet, J. Kreisel et al., Phys. Rev. B 75, 220102 (2007)

  20. X. Yan, G. Tan, W. Liu et al., Ceram. Int. 41, 3202 (2015)

  21. G. Zhang, S. Jiang, Y. Zeng, Y. Zhang, Q. Zhang, Y. Yu, J. Wang, Phys. Status Solidi. 208, 2699 (2011)

  22. A. Abid Zaman, M. Ali, M. Anas, A.S. Kamran, V. Khan, Y. Tirth, Jehan, A. Al-Humaidi, M.S. Arabi, Refat, R. Ullah, ACS Omega. 8, 13222 (2023)

  23. T. Durga Rao, B. Sattibabu Saket, Asthana, Phys. Status Solidi B 256, 1900097 (2019)

  24. R. Yanes, J. Jackson, L. Udvardi, L. Szunyogh, U. Nowak, Phys. Rev. Lett. 111, 217202 (2013)

  25. T. Durga Rao, S. Marik, D. Singh, R.P. Singh, J. Alloys Compd. 705, 849 (2017)

  26. Dao Viet Thang, N.M. Hung et al., AIMS Mater. Sci. 7(2), 160–169 (2020)

  27. S.R. Shannigrahi, A. Huang, D. Tripathy, A.O. Adeyeye, J. Magn. Magn. Mater. 320, 2215 (2008)

  28. G.G. Rao, K. Samatha, S. Bharadwaj, M.P. Dasari, Mod. Phys. Lett. B 30(4), 1650311 (2016)

  29. P. Uniyala, K.L. Yadav, J. Alloys Compd. 511, 149 (2012)

  30. T. Durga Rao, A. Kumari, M.K. Niranjan, Saket Asthana Phys. B 448, 267 (2014)

  31. Y.A. Alsabah, M.S. AlSalhi, A.A. Elbadawi, E.M. Mustafa, Materials. 10, 1–12 (2017)

  32. A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Appl. Nanosci. 2, 305 (2012)

  33. N. Manjula, S. Ramu, K. Sunil Kumar, R.P. Vijayalakshmi, Adv. Mat. Lett. 9(3), 175 (2018)

Download references

Acknowledgements

TDR is grateful to the UGC, Government of India, for the UGC-BRS Research (Startup grant) [No. F. 30–481/2019(BSR)] and to UGC-DAE CRS, Mumbai Centre, India, for a research grant under a collaborative research scheme [CRS-M-313] to carry out this work. TDR also acknowledges the MURTI facility, GITAM (Deemed to be University), for providing the FESEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and T.D.R. conceived the idea for the study and supervised and drafted the manuscript of the study. Ch.K.L. and G.B helped for XRD and Raman studies, B.M.P. and S.A. for magnetic and P–E hysteresis loop study, KLN, and T.K. for microstructural and UV-Visible studies, B.S.B, S.B and V.S. for dielectric studies. All the authors commented on the results and reviewed the manuscript.

Corresponding author

Correspondence to T. Durga Rao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhadhar, M., Rao, T.D., Lakshmi, C.K. et al. Structural, optical and multiferroic properties of (1-x)BiFeO3-xNa0.5Bi0.5TiO3, x = 0.00, 0.05, 0.10 and 0.15. Appl. Phys. A 130, 396 (2024). https://doi.org/10.1007/s00339-024-07568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07568-7

Keywords

Navigation