Skip to main content

Advertisement

Log in

Theoretical prediction of phase transition, mechanical and electronic properties of manganese diboride under pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structure prediction algorithm CALYPSO combined with density functional theory calculations are used to find the high-pressure stable structure of manganese diboride (MnB2) in the pressure range of 0–400 GPa. It is found that the pressure-induced phase transition sequence of MnB2 should be P63/mmc (hP6-MnB2) → Immm (oI18-MnB2) → Pnma (oP12-MnB2) → Imma (oI12-MnB2), and the transition pressure is 35.9, 62.4, and 137.3 GPa, respectively. Among them, oP12-MnB2 is a new stable orthorhombic phase in MnB2 and never have been reported before. At ambient conditions, the calculated hardness of hP6-MnB2 and oI18-MnB2 is 34.5 and 22.9 GPa, respectively, suggesting that they are potentially hard material. However, oP12-MnB2 and oI12-MnB2 just possess a smaller hardness value of 13.9 and 16.2 GPa at the pressure of 80 and 140 GPa, respectively. In addition, the electronic structure and chemical bonds studies showed that the strong covalent bond formed by B-B bonds serve as the primary factor for maintain the structural stability of oP12-MnB2 and oI12-MnB2 under high pressure. Furthermore, at the pressure of 140 GPa, the B-B bonds of oP12 phase exists obvious antibonding characteristics below Femi level. The filling of anti-bonding states is detrimental to the stability of the crystal structure, which is the reason why the oP12 phase is less stable than the oI12 phase at this pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All relevant data are within the paper and the data are available from the corresponding author on reasonable request.

References

  1. X. Zheng, J. Cui, C. Gu, W. Bao, X. Zhou, J.X. Liu, G.J. Zhang, W. Zhang, Y. Zhao, S. Wang, Y. Liang, Scr. Mater. 220, 114938 (2022). https://doi.org/10.1016/j.scriptamat.2022.114938

    Article  Google Scholar 

  2. V.L. Solozhenko, O.O. Kurakevych, Phys. Rev. Lett. 102, 015506 (2009). https://doi.org/10.1103/PhysRevLett.102.015506

    Article  ADS  Google Scholar 

  3. Y. Liang, Phys. Rev. B 76, 132101 (2007). https://doi.org/10.1103/PhysRevB.76.132101

    Article  ADS  Google Scholar 

  4. X.Q. Chen, Phys. Rev. Lett. 100, 196403 (2008). https://doi.org/10.1103/PhysRevLett.100.196403

    Article  ADS  Google Scholar 

  5. T. Qiang, A. Phys, Sin. 66, 036103 (2017). https://doi.org/10.7498/aps.66.036103

    Article  Google Scholar 

  6. Y. Yao, J.S. Tse, Phys. Rev. B 80, 094106 (2009).https://doi.org/10.1103/PhysRevB.80.094106

  7. Y. Pan and S. Chen, Vacuum 198, (2022). https://doi.org/10.1016/j.vacuum.2022.110898

  8. X. Hao, Y. Xu, Phys. Rev. B 74, 224112 (2006). https://doi.org/10.1103/PhysRevB.74.224112

    Article  ADS  Google Scholar 

  9. R.W. Cumberland, Chem. Inform 36, (2005). https://doi.org/10.1002/chin.200534010

  10. B. Azar-Kia, E. Palacios, R. Churchill, I.M.J. Ill, Med. J. 148, 532 (1975)

    Google Scholar 

  11. V.L. Solozhenko, Appl. Phys. Lett. 78, 1385 (2001). https://doi.org/10.1063/1.1337623

    Article  ADS  Google Scholar 

  12. E. Beutler, W. Kuhl, J. Exp. Med. 143, 975 (1976). https://doi.org/10.1084/jem.143.4.975

    Article  Google Scholar 

  13. J. Si, J. Yu, J. Am. Chem. Soc. 145, 3994 (2023). https://doi.org/10.1021/jacs.2c11139

    Article  Google Scholar 

  14. Y. Wang, J. Alloys Compd. 538, 115 (2012). https://doi.org/10.1016/j.jallcom.2012.05.114

    Article  Google Scholar 

  15. Q. Tao, S.L. Ma, T. Cui, P.W. Zhu, Acta Phys. Sin. 66, 036103 (2017). https://doi.org/10.7498/aps.66.036103

    Article  Google Scholar 

  16. Y. Liang, Z. Wu, X. Yuan, W. Zhang, P. Zhang, Nanoscale 8, 1055 (2016). https://doi.org/10.1039/C5NR06404J

    Article  ADS  Google Scholar 

  17. H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner, Science 316, 436 (2007). https://doi.org/10.1126/science.1139322

    Article  ADS  Google Scholar 

  18. Z.Y. Chen, Phys. Rev. B 74, 012102 (2006). https://doi.org/10.1103/PhysRevB.74.012102

    Article  ADS  Google Scholar 

  19. B. Li, Phys. Rev. B 87, 174106 (2013). https://doi.org/10.1103/PhysRevB.87.174106

    Article  ADS  Google Scholar 

  20. M.M. Zhong, C. Huang, C.L. Tian, Int. J. Mod. Phys. B 31, 1750131 (2017). https://doi.org/10.1142/S0217979217501314

    Article  ADS  Google Scholar 

  21. H. Li, J. Phase Equilibria Diffus. 32, 422 (2011). https://doi.org/10.1007/s11669-011-9930-x

    Article  Google Scholar 

  22. S.M. Sichkar, Low Temp. Phys. 39, 595 (2013). https://doi.org/10.1063/1.4816117

    Article  ADS  Google Scholar 

  23. S. Aydin, Phys. Rev. B 80, 134107 (2009). https://doi.org/10.1103/PhysRevB.80.134107

    Article  ADS  Google Scholar 

  24. B. Wang, X. Li, J. Phys. Chem. C 115, 21429 (2011). https://doi.org/10.1021/jp2073683

    Article  Google Scholar 

  25. J. Fan, K. Bao, X. Jin, J. Mater. Chem. 22, 17630 (2012). https://doi.org/10.1039/c2jm31385e

    Article  Google Scholar 

  26. H. Gou, Appl. Phys. Lett. 102, 061906 (2013). https://doi.org/10.1063/1.4792273

    Article  ADS  Google Scholar 

  27. H. Niu, X.Q. Chen, W. Ren, Q. Zhu, A.R. Oganov, D. Li, Y. Li, Phys. Chem. Chem. Phys. 16, 15866 (2014). https://doi.org/10.1039/C4CP01339E

    Article  Google Scholar 

  28. C. Xu, K. Bao, S. Ma, Y. Ma, S. Wei, Z. Shao, X. Xiao, X. Feng, T. Cui, RSC Adv. 7, 10559 (2017). https://doi.org/10.1039/C6RA27148K

    Article  ADS  Google Scholar 

  29. Y. Wang, J. Lv, Phys. Rev. B 82, 094116 (2010). https://doi.org/10.1103/PhysRevB.82.094116

    Article  ADS  Google Scholar 

  30. Y. Wang, Comput. Phys. Commun. 183, 2063 (2012). https://doi.org/10.1016/j.cpc.201205.008

    Article  ADS  Google Scholar 

  31. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)000080

    Article  Google Scholar 

  32. F. Malet, A. Mirtschink, C.B. Mendl, J. Bjerlin, E.Ö. Karabulut, S.M. Reimann, and P. Gori-Giorgi, Phys. Rev. Lett. 115, 033006 (2015).https://doi.org/10.1103/PhysRevLett.115.033006

  33. R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer Berlin Heidelberg, Berlin, Heidelberg, 1990). http://link.springer.com/https://doi.org/10.1007/978-3-642-86105-5

  34. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998). https://doi.org/10.1063/1.368733

    Article  ADS  Google Scholar 

  35. H.J. Monkhorst, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  36. A.T. Lech, C.L. Turner, R. Mohammadi, S.H. Tolbert, R.B. Kaner, Proc. Natl. Acad. Sci. 112, 3223 (2015). https://doi.org/10.1073/pnas.1415018112

    Article  ADS  Google Scholar 

  37. K. Parlinski, Phys. Rev. Lett. 78, 4063 (1997). https://doi.org/10.1103/PhysRevLett.78.4063

    Article  ADS  Google Scholar 

  38. D. Alfè, 40 YEARS CPC Celebr. Issue Focus. Qual. Softw. High Perform. Grid Nov. Comput. Archit. 180, 2622 (2009). https://doi.org/10.1016/j.cpc.2009.03.010

  39. S.P. Łepkowski, Phys. Rev. B 102, 134116 (2020). https://doi.org/10.1103/PhysRevB.102.134116

    Article  ADS  Google Scholar 

  40. R. Dronskowski, J. Phys. Chem. 97, 8617 (1993). https://doi.org/10.1021/j100135a014

    Article  Google Scholar 

  41. S. Steinberg and R. Dronskowski, Crystals 8, 225 (2018).https://doi.org/10.3390/cryst8050225

  42. Liao, P. K.; Spear, K. E. Bull. Alloy Phase Diag. 1986, 7, 543–549).

  43. J. Feng, B. Xiao, J. Chen, Y. Du, J. Yu, R. Zhou, Mater. Des. 32, 3231 (2011). https://doi.org/10.1016/j.matdes.2011.02.043

    Article  Google Scholar 

  44. C. Li, X.D. Zhang, F. Wang, Vacuum 220, 112793 (2024). https://doi.org/10.1016/j.vacuum.2023.112793

    Article  ADS  Google Scholar 

  45. K. Wang, X.D. Zhang, F. Wang, Chem. Phys. Lett. 836, 141024 (2024). https://doi.org/10.1016/j.cplett.2023.141024

    Article  Google Scholar 

  46. R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952). https://doi.org/10.1088/03701298/65/5/307

    Article  ADS  Google Scholar 

  47. P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani1, Phys. Rev. B 63, 045115 (2001). https://doi.org/10.1103/PhysRevB.63.045115

  48. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954). https://doi.org/10.1080/14786440808520496

  49. X.Q. Chen, Intermetallics 19, 1275 (2011). https://doi.org/10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  50. A. Morales-Bayuelo, Heliyon 6, e04441 (2020). https://doi.org/10.1016/j.heliyon.2020.e04441

    Article  Google Scholar 

  51. M.E. Alikhani, Y. Bouteiller, B. Silvi, J. Phys. Chem. 100, 16092 (1996). https://doi.org/10.1021/jp9535351

    Article  Google Scholar 

  52. A. Abuova, N. Merali, Crystals 12, 1546 (2022). https://doi.org/10.3390/cryst12111546

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Program of Shaanxi Province under Grant No. 2024JC-YBQN-0044, the National Natural Science Foundation of China under Grant Nos. 11904282, and the Doctoral Scientific Research Foundation of Xi’an University of Science and Technology under Grant No. 2018QDJ029.

Author information

Authors and Affiliations

Authors

Contributions

YXW conceived the research, XFW performed atomic and electronic structure calculations. YXW, HW, WNX, YXZ and ZW analyzed the numerical results. XFW wrote the manuscript and all the authors commented on it.

Corresponding author

Correspondence to Yi X. Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.F., Wang, Y.X., Wu, H. et al. Theoretical prediction of phase transition, mechanical and electronic properties of manganese diboride under pressure. Appl. Phys. A 130, 414 (2024). https://doi.org/10.1007/s00339-024-07558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07558-9

Keywords

Navigation